BPM-Based Energy Spectrometer

Yury Kolomensky
UC Berkeley/LBNL

For T474/T491 Collaborations
UCB/LBNL, Cambridge, Dubna, DESY/Zeuthen,
UCL, Notre Dame, RHUL, SLAC

GDE/BDS October 23, 2007

Upstream ILC Energy Spectrometer

- Precision measurement : $\sigma(E)/E \sim 10^{-4}$
- Minimal impact on beam itself: allowed emittance growth from SR
- Limited space budget in BDS ~ 60 m
- Minimal impact on physics data taking for e.g. calibration runs

- Magnetic chicane with high resolution beam position monitors:
 cavity BPMs
- Max 5 mm dispersion at center chicane : determines required resolution
- Emittance growth determines chicane layout
- Diagnostics and monitoring:
 - Gain drifts : temperature
 - Mechanical stability : interferometer
 - Magnetic fields (∫B.dl): NMR, Hall, fluxgate magnetometers

Energy Spectrometer Prototype in ESA

- T474/T491 experiments at SLAC End Station A
 - \Box Build a prototype spectrometer with 10^{-4} stability
 - [™] 250 nm position stability, ~1 μm resolution
 - Precisely measured and monitored magnetic fields
 - Precision measurement of physical positions
 - Also test linac BPM prototypes
 - □ Test beams at SLAC End Station A in 2006-2008

10/23/2007

ESA Layout

Comparable repetition rate, bunch charge, energy spread as ILC Systematics: ability to vary bunch length, energy, charge Position feedback system

- Build an energy spectrometer prototype, using a 4 magnet chicane
 - Operate at ~5 mm η_X at center chicane as in current ILC design Need < 1 μ m resolution on position measurement (BPM)

 - With position measurement stability over multiple hours of ~ 250 nm

ESA BPM Configuration

- 13 BPM stations, S-band
 - □ 12, 24, 31,32 (A-line),1,2 (ESA alcove): ALine-style stations
 - Each with X,Y,Q cavities, 2-3" ID
 - A-line BPMs for trajectory and energy reference/cross check
 - □ 9,10,11: SLAC linac-style stations
 - Each with X,Y,Q cavities, 0.8" ID, Q~3000
 - □ 3,4,5: ILC linac-style cavities
 - New SLAC design (C.Adolphsen et al.), 36 mm ID, Q~500
 - 6: new UK design

ILC Linac Prototypes

BPMs 9,10,11 (E158 ASSET structure)

Spectrometer

T474/T491 Collaborations

UC Berkeley/LBNL, Cambridge, DESY/Zeuthen, Dubna, UCL, Notre Dame, RHUL, SLAC PI's: M. Hildreth (Notre Dame), Yu. Kolomensky (Berkeley) and S. Boogert (RHUL) FY06 running:

January run: test setup (4 days)

April run:

- commissioning of RF cavity BPMs outside of chicane (old & new)
- optimization of digitization and processing

July run:

- commissioning of interferometer system on ILC linac prototype BPMs
- commissioning of energy BPM at high dispersion
- stability data taking with 10 BPMs, frequent calibrations

FY07 running:

March run:

- installation and commissioning of magnetic chicane : first chicane data !
- relocation of BPM/interferometer to center of chicane,
- cal tone system and new processors with remotely controllable attenuation

July run:

- commissioning of second energy BPM
- cal tone system and new processors with remotely controllable attenuation

Planned FY08 operations

New Spectrometer BPM Prototype

Optimized design: A. Lyapin/UCL:

- High resolution : $\sim 100 200 \text{ nm}$
- Large aperture
- Monopole suppression
- Additional reference cavity

developed by UCL/RHUL Use SLC MDL 2856 Digitize at 22 MHz Dipole cavity, 2878 MHz **Processor electronics** Reference cavity

Mover system

Magnetic Fields

Simulation of magnets carried out by N. Morozov (Dubna) prepare for measurements in SLAC testlab (SLAC/Dubna/Zeuthen)

Main simulation results:

- magnetic field integral 10⁻⁴ uniformity region is ±15 mm
- region for possible NMR probe use determined ($X*Z=\pm7*\pm40$ cm)
- relative contribution of the fringe field to the total field integral is 22%
- maximal level of the magnetic field in return yoke is no more 0.4 T
- temperature factor for the magnetic field integral is $6.1\times10^{-5}\times1/C^{\circ}$
- Screens to reduce fringe fields

Magnetic Measurements

Results of magnetic measurements in SLAC lab, Nov. '06 (SLAC/Dubna/Zeuthen)

- Magnetic field integral RMS stability: 60 ppm (near working point 150 A)
- Bdl relative RMS stability: ~ 100 ppm (both at 150 A and 200 A)
- measured temperature factor for the magnetic field integral is 5.7 10⁻⁵/C° in a good agreement with estimated one from magnetic field simulations 6.1 10⁻⁵/C°
- JB.dl value (~ 0.117 T.m when I ~ 150 A) is in agreement with simulations : 0.118 T.m
- Analytical dependence of $\int B.dl$ vs. Current obtained in the vicinity of the working point $\int B.dl = 0.7813 \ 10^{-3}$ x Current

Residual magnetic field along full chicane length (vertical component)

S. Kostromin/Dubna

Mechanical Stability: Interferometer

- Sub-nm resolution, installation itself is stable over 1 hour within 30 nm with fixed mirrors
- Monitor offset front to center of chicane
- Single laser, send laser beam down long pipe

Current Status

- Adequate resolution
 - □ S-band, 200-600 nm resolution over ~1 mm dynamic range
 - Better than 500 nm resolution for linac BPM prototypes

y10 resolution

ESA Status (cont.)

- Position stability of O(100 nm) achieved over short distance scales
 - □ 250 nm over spectrometer length, ~40 mins
 - Mainly caused by temperature drifts
 - © Calibrate out with external tone

Long-Term Stability

- No intermediate calibrations applied
 - □ Sizable drifts
 - Torbit stability
 - Environmental effects (still to be taken out)

Gain Stabilization

Send triggered CW tone to electronics to monitor gain / phase drifts (UCL/RHUL/UCB) Observe variation correlated with temperature

Entire chicane equipped with gain calibrators in July 07: data being analyzed

M.Chistiakova/Berkeley

Temperature drifts in counting house are significantly larger than ESA; have now moved all electronics into ESA

Issues: Position Calibration

Apparent calibration constant drifts: issues with corrector calibrations Need at least a pair of BPMs on movers (to be installed before FY08 run)

Faster BPM Calibration

- Fast dither with helmholtz coils
- Commissioned during march '07 run
- Less sensitive to beam jitter/drifts
- Produces average scales and IQ phases
- Automation : synchronize with DAQ

Preliminary Spectrometer Results

- Taking into account ∫B.dl and deflection at center of chicane, can compute correct beam energy
- Have to subtract incoming orbit in each event : prove we measure just energy !
- Further detailed analysis, spectrometer stability studies underway...

Outlook

- Planned FY08 run
 - New/improved BPM prototype (UCL), movers on at least 2 BPMs
 - Well-debugged calibration, monitoring; full chicane operation
 - Reduce vibrations
 - Correlate to synch stripe measurements (T475, see E.Torrence's talk):
- Hope to install metrology grid (M. Hildreth et al.)
 - Understanding mechanical stability over entire spectrometer

- Publications in preparation (NIM)
- Full analysis in progress