BDS Instrumentation

Philip Burrows

John Adams Institute, Oxford University

Mike Woods

Thanks to: Manfred Wendt (FNAL)

- 1. BPMs
- 2. Emittance: transverse
- 3. Emittance: longitudinal
- 4. Beam current monitors
- 5. Beam phase monitors
- 6. Beam loss monitors
- 7. Beam feedback systems
- 8. Beam energy measurements
- 9. Beam polarisation measurement
- 10. Background monitors
- 11. Collision diagnostics

1. BPMs

- 1.1 Buttons
- 1.2 Striplines
- 1.3 Warm C-band cavities
- 1.4 Warm S-band cavities
- 1.5 Warm L-band cavities
- 2. Emittance diagnostics: transverse
 - 2.1 Laserwires
 - 2.2 Optical monitors (ODR, OTR, X-ray SR)
- 3. Emittance diagnostics: longitudinal
 - 3.1 Deflecting-mode (cold) cavities
 - 3.2 Other: electro-optic, diodes, Smith-Purcell ...

- 4. Beam current monitors
- 5. Beam phase monitors
- 6. Beam loss monitors:
 - **6.1 PMT**
 - 6.2 Ion chambers
- 7. Feedback systems:
 - 7.1 IP position, angle, luminosity (intra-train + 5Hz)
 - 7.2 Upstream trajectory (5Hz)
 - 7.3 BDS entrance intra-train
 - 7.4 Integration and interface to global system

8. Beam energy measurements:

- 8.1 Upstream spectrometer
- 8.2 Extraction-line system
- 8.3 Energy spread
- 8.4 E-z correlations

9. Polarimetry:

- 9.1 Upstream
- 9.2 Extraction-line

10. Background monitors:

- 10.1 BSR pairs/photons
- 10.2 SR photons
- **10.3 muons**
- 10.4 neutrons
- 10.5 beam halo
- 10.6 EMI?

11. Collision diagnostics:

- 11.1 Luminosity
- 11.2 Beam offsets
- 11.3 Beam divergence angles
- 11.4 Beamcal
- 11.5 Gamcal
- 11.6 Beam waists
- 11.7 Dispersion
- 11.8 Bunch tilts

Work package outline

```
scope
goals
schedule
milestones
deliverables
resources (personnel, materials, infrastructure)
co-ordinator
```

ILC Project Management expects an MOU for each Work Package

Generalised scope of each task

Review of performance requirements

Document listing specifications

resolution, timing, dynamic range, linearity ...

Review of state of the art / technologies

Specification of baseline / alternate technology

Conceptual engineering specification

Drawing / manufacturer's part number ...

Specification of R&D programme with deliverables

Revised cost estimate

Expressions of interest

Button, stripline, cavity BPMs FNAL

Laserwire UK

Bunch length (also beam phase) UK, FNAL

OTR/ODR monitors UK, FNAL

Toroids FNAL

Feedback systems UK, FNAL

E-spectrometer UK, UCB, JINR, DESY, SLAC, Notre Dame, Oregon

Polarimeter Iowa, INFN, SLAC, Tufts

Gamcal BNL, Yale, DESY

BDS/IR alignment UK

Shintake Monitor (ATF2) Tokyo

BDS Instrumentation Meetings & Reviews

- > start monthly meetings in November
- > updates from the Work Package co-ordinators
- detailed review/discussion for one system each month

Proposed system reviews

 November – transverse spotsize/emittance: laser wire + other proposals

(OTR, ODR, Shintake)

- December beam position monitors
- January bunch length: XCAV/LOLA, electro-optic + other proposals

(Smith-Purcell, diodes)

- February collision diagnostics: BeamCAL, GamCAL + other
- March beam loss, backgrounds and beam halo
- April polarization and energy (during workshop at DESY-Zeuthen)

Following slides

Talk given at BDS kick-off meeting

Outline

- Reminder of RDR
- EDR instrumentation issues
- Updated instrumentation list
- Expressions of interest
- Development of WBS

Reminder of RDR

- Instrumentation was 'technical system' with pan-machine view
- Purview: meas. of beam-related parameters:

eg. beam position, charge, size ...

NOT

RF control, temperature, pressure, flow, currents ...

- Boundary with Controls defined (NB feedbacks)
- Luminosity, energy, polarimetry explicitly excluded
- Did not consider monitors for beam-related backgrounds

RDR instrumentation master table

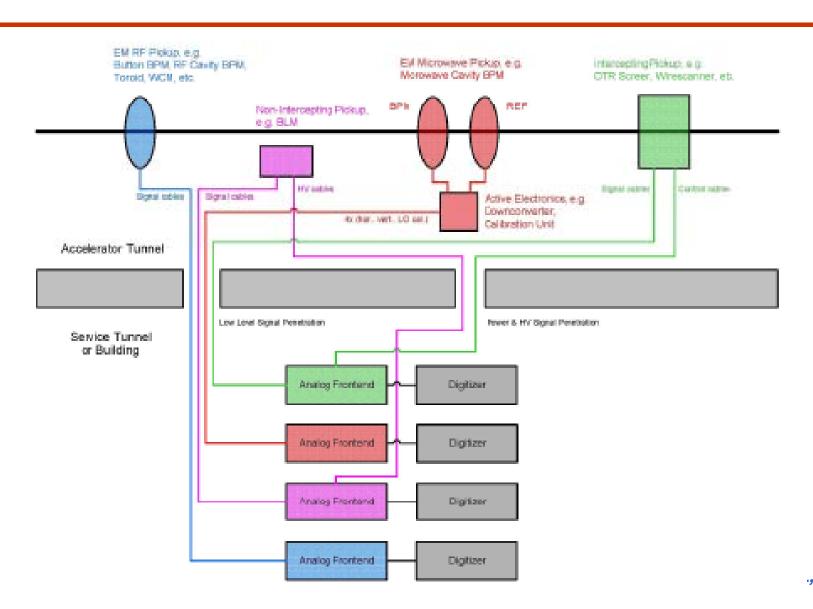
INSTRUMENT	AREA					
requirements	e ⁻	e ⁺	DR	RTML	ML	BDS
(e.g. resolution)	source	source				
Button/stripline BPM	69	400	2 × 747			120
resolution (μm)	10-30	10-30	< 0.5			<100
C-Band Cavity BPM (warm)		109		2×649		262
resolution (μm)		< 0.1-0.5		< 0.1-0.5		< 0.1-0.5
S-Band Cavity BPM (warm)						14
resolution (μm)						< 0.1-0.5
L-Band Cavity BPM (warm)				2×27		42
resolution (μm)				<1-5		<1-5
L-Band Cavity BPM (cold)				2×28	2×280	
resolution (μm)				~0.5-2	~0.5-2	
Laser-wire IP	8	20	2×1	2×12	2×3	8
resolution (μm)	<0.5-5	< 0.5-5	<0.5-5	<0.5-5	<0.5-5	<0.5-5
Wirescanner	12	8				
Optical Monitors	6	17	2×2	2×8		11
DMC	3	4		2×2		2 (cold)
resolution $\Delta E \sim 0.1\%$ / $s_z \sim 100~\mu\mathrm{m}$						
Beam Current Monitors	7	11	2×1	2×2	2×3	10
Beam Phase Monitor	4	2		2×3		2
BLM (PMT/IC)	60/2	400/20	$2 \times 40/4$	$2 \times 75/2$	$2 \times 325/10$	100/10
Feedback System	5	10	2×2	2×1	2 × 1 0	12

RDR instrumentation master table

INSTRUMENT	AREA					
requirements	e ⁻	e ⁺	DR	RTML	ML	BDS
(e.g. resolution)	source	source				
Button/stripline BPM	69	400	2 × 747			120
resolution (μm)	10-30	10-30	< 0.5			<100
C-Band Cavity BPM (warm)		109		2×649		262
resolution (μm)		<0.1-0.5		< 0.1-0.5		< 0.1-0.5
S-Band Cavity BPM (warm)						14
resolution (μm)						< 0.1-0.5
L-Band Cavity BPM (warm)				2×27		42
resolution (μm)				<1-5		<1-5
L-Band Cavity BPM (cold)				2×28	2×280	
resolution (μm)				~0.5-2	~0.5-2	
Laser-wire IP	8	20	2×1	2×12	2×3	8
resolution (μm)	<0.5-5	< 0.5-5	<0.5-5	<0.5-5	<0.5-5	<0.5-5
Wirescanner	12	8				
Optical Monitors	6	17	2×2	2×8		11
DMC	3	4		2×2		2 (cold)
resolution $\Delta E \sim \!\! 0.1\%$ / $s_z \sim \!\! 100~\mu\mathrm{m}$						
Beam Current Monitors	7	11	2×1	2×2	2×3	10
Beam Phase Monitor	4	2		2×3		2
BLM (PMT/IC)	60/2	400/20	$2 \times 40/4$	$2 \times 75/2$	$2 \times 325/10$	100/10
Feedback System	5	10	2×2	2×1	2 × 1 0	12

RDR BDS Instrumentation List

•	Button / stripline BPMs	120	< 100 um
•	Warm C-band cavity BPMs	262	0.1 - 0.5 um
•	Warm S-band cavity BPMs	14	0.1 - 0.5 um
•	Warm L-band cavity BPMs	42	1 – 5 um
•	Laserwire IPs	8	0.5 - 5um
•	Optical monitors (bunch size)	11	
•	Deflecting-mode (cold) cavities	2	100 um
•	Beam current monitors	10	
•	Beam phase monitors	2	
•	Beam loss monitors (PMT/IC)	100/10	
•	Feedback systems	12	
	Philip Burrows 17	BDS, A	LCPG FNAL, 24/10/07


RDR BDS Instrumentation List

•	Button / stripline BPMs	120	< 100 um
•	Warm C-band cavity BPMs	262	0.1 - 0.5 um
•	Warm S-band cavity BPMs	14	0.1 - 0.5 um
•	Warm L-band cavity BPMs	42	1 – 5 um
•	Laserwire IPs	8	0.5 - 5um
•	Optical monitors (bunch size)	KR	
•	Deflecting-mode (cold) cavities	2	100 um
•	Beam current monitors	10	
•	Beam phase monitors	2	
•	Beam loss monitors (PMT/IC)	100/10	
•	Feedback systems	12	

What was costed

- Pickup station (typically part of vacuum system)
- 'Detectors': PMTs, scintillators, lasers, calib. systems
- RF system + infrastructure for DMCs
- Mechanical setup, incl. motors, switches ...
- Signal + control cables, connectors, patch panels
- Dedicated readout electronics (analogue + digital)
- Control, timing, calibration electronics
- Local software + firmware
- Intra-train feedbacks: dedicated DAQ

Boundary with Controls

BDS Feedbacks

- Train-to-train trajectory 5 Hz
- IP collision: intra-train (3 MHz) + 5 Hz
- IP luminosity: intra-train

NB upstream feedbacks:

- End-of-linac trajectory: intra-train
- RTML feed-forward: intra-train
- Linac cascaded trajectory 5 Hz

RDR costs / cost drivers

Machine-wide:

- Value: c. XX MILCU
- Labour:

Prototyping + testing: 257 person-years

NB: installation labour covered elsewhere

Biggest + costliest systems:

4500 BPMs (47%), 68 laserwire IPs (22%)

BDS:

3.4% BDS cost – Andrei, 40 person-years

EDR Instrumentation: issues

Instrumentation divided among areas; need to:

- Ensure coordinate design of common devices (BPMs, toroids, bunch length, laserwire ...)
- Avoid duplication of effort
- Keep track of interfaces w. Controls
- Work closely w. Accelerator Physics group
- Define interface with detectors:

'MDI' instrumentation: L, E, P, backgrounds?

Comments

Some devices are high-volume, with 'low' unit cost: toroids, BPMs ...

Some devices are (unique) complex systems:

laserwires, energy spectrometers, polarimeters,

LOLA bunch-length monitor, feedback systems ...

Vast majority of effort will go into complex systems!

EDR BDS Instrumentation: plan

Reviewing instruments list:

Is it consistent / correct?

Missing items?

- Collecting Eols
- Need to review/define:

Scope of work for EDR

Priorities for effort: design + R&D

Develop WBS in more detail

For each device

 Review required performance specifications iteration with Accelerator Physics

Review RDR technologies:

'state of the art' devices: good enough, or R&D needed?

simpler/cheaper technologies?

baselines/alternatives?

fewer (or more!) devices?

Refine EDR work plan + deliverables:

Specification of 'off-shelf' devices?

Engineering design of (pre-industrial) prototype?

Significant R&D for complex devices/systems?

PRELIMINARY guess of status

- Button / stripline BPMs
- Warm C-band cavity BPMs
- Warm S-band cavity BPMs
- Warm L-band cavity BPMs
- Laserwire IPs
- Optical monitors (bunch size)
- Deflecting-mode (cold) cavities
- Beam current monitors
- Beam phase monitors
- Beam loss monitors (PMT/IC)
- Feedback systems

off-shelf / engineering

engineering / R&D

engineering / R&D

engineering / R&D

R&D / engineering

R&D / engineering

engineering

off-shelf

R&D / engineering

engineering

R&D / engineering

BDS, ALCPG FNAL, 24/10/07

Comment

- In some cases (cavity BPMs, toroids ...) required performance may have been achieved for SINGLE-bunch mode
- Further R&D may be required to demonstrate TIME-RESOLVED performance bunch-by-bunch

'Physics' instrumentation

- Upstream + downstream
 - energy + energy spread measurement polarimeters
- Luminosity monitoring:

Beamcal, Gamcal, rad. Bhabhas ...

- Beam correlations: y-z, x-z, E-z?
- IP collision parameters: x, x', y, y', offsets, spot sizes, coupling ...
- Disrupted beam parameters
- Beam halo, beam loss monitoring
- Background monitoring:

muons, neutrons, photons, e+e-

Commissioning strategy

 If commissioning of BDS and/or IR is anticipated BEFORE the detector(s) are rolled on beamline

it may be prudent to plan for appropriate instrumentation at the Machine Detector Interface

NOT included so far

Expressions of interest

Button, stripline, cavity BPMs FNAL

Laserwire UK

Bunch length (also beam phase) UK, FNAL

OTR/ODR monitors UK, FNAL

Toroids FNAL

Feedback systems UK, FNAL

E-spectrometer UK, UCB, JINR, DESY, SLAC, Notre Dame, Oregon

Polarimeter Iowa, INFN, SLAC, Tufts

Gamcal BNL, Yale, DESY

BDS/IR alignment UK

Shintake Monitor (ATF2) Tokyo

Comments on Eols

- Not all bases covered by Eols
- Scope of Eols varies considerably
- Levels of resources vary greatly
- Not yet 'unpacked' Eols
- Vastly more worldwide expertise than in submitted Eols

Towards a WBS

- Draft WBS for WP9 ...
- Laundry-list of instrumentation!

NB: Overlap with WP2: ATF2

Coupling with WP3: accelerator physics design

Coupling with WP4: IR + IR integration

Interface with WP10: vacuum system

Interface with Controls

Global approach needed for feedback

→ is a 'systems' approach more desirable?

MDI 'Diagnostics'

- Electromagnetic interference antennae?
- Radiation damage monitors?
- Crab cavity phase
- Magnet vibrations
- Alignment
- Vacuum
- Temperatures
- Magnetic fields
- Power supply currents