

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Digital HCAL Electronics Current Status & Plans

Gary Drake

Argonne National Laboratory

ALCPG07 Meeting Fermilab Oct. 24, 2007

Representing the Work of Our DHCAL Group:

John Butler, BU **Tim Cundiff, ANL** Vic Guarino, ANL **Bill Haberichter, ANL Eric Hazen, BU Jim Hoff, FNAL Scott Holm, FNAL** Jia Li, UTA **Andrew Kreps, ANL** Ed May, ANL G. Mavromanolakis, FNAL Ed Norbeck, Iowa José Repond, ANL **Shouxiang Wu, BU** Lei Xia, ANL Dave Underwood, ANL Andy White, UTA Ken Wood, FNAL Jae Yu, UTA

BOLD = Electronics Design Contributions

The Goals of our R&D Program:

- To measure hadronic showers using a "fine-grain" detector (1 cm² pads) having 1-bit resolution \rightarrow "Digital Calorimetry"
- **To use these measurements in the development of Particle-Flow Algorithms**
 - Test how well do current simulations work
 - Provide a physical measurement basis for current and future simulations
 - Caveat: Can't do full PFAs without Tracking, But can get single particle profiles
- To develop detector technologies suitable for PFAs and the ILC \rightarrow RPCs & GEMs
- To begin to develop instrumentation techniques suitable for this approach

Our goal: To build a 400,000 channel "cubic meter" detector In collaboration with CALICE \rightarrow "Prototype Section"

We are NOT developing instrumentation for a real ILC detector

We are NOT trying to solve all of the problems & issues associated with instrumenting and building a real ILC detector

We ARE forming a basis for future developments in Digital Hadron Calorimetry

Detector Configuration

Detector Configuration

Original Conception (RPC Shown):

General System Specifications & Design Decisions

- Front-end instrumentation to use 64-channel custom ASIC → DCAL
 - 1 cm² pads, 1 meter² planes, 40 planes, \rightarrow 400,000 channels for 1 m³
- Front-end channel consists of amplifier/shaper/discriminator
- Single programmable threshold per chip → 1 bit dynamic range
 - DAC has 8-bit range
 - Common threshold per ASIC
- **2** gain ranges
 - High gain for GEMs (20 fC ~200 fC signals)
 - Low gain for RPCs (100 fC ~10 pC signals)
- Timestamp each hit, 100 nSec time resolution
 - − 1 second dynamic range \rightarrow 24 bits @ 100 nSec
 - Synchronize timestamps over system
- Data from FE consists of hit pattern in ASIC + timestamp
 - 24 bit timestamp + 64 hit bits = 88 bits (+ address, error bits, etc.)

General System Specifications & Design Decisions (Continued)

- Capability for **Self Triggering** → Noise, Cosmic rays
- Capability for External Triggering → Primary method for beam events
 - 20-stage pipeline \rightarrow 2 µSec latency @ 100 nSec
- Capability of FE to source prompt Trigger Bit (simple OR of all disc.)
- Capability to store up to 8-deep output buffer (FIFO) in ASIC
- Design for 100 Hz (Ext. Trig) nominal rate
- Dead-timeless Readout
- **Zero-suppression** implemented in front-end
- Time-sorting of data implemented in VME readout
- On-board charge injection with programmable DAC
- Design for 10% occupancy
- Concatenate data in front-ends
- Use serial communication protocols
- Slow controls separate from data output stream
- Compatibility with CALICE DAQ

System Block Diagram

System Physical Implementation – Cubic Meter

Square Meter Plane

Block Diagram of the DCAL ASIC

DCAL ASIC Layout – Version 2

Fabricated in TSMC 0.25 μm CMOS Die ~4 mm x 6 mm, 160-pin TQFP package

‡ Fermilab

DCAL Chip Testing

- Design
 - Specified by Argonne
 - Designed by Fermilab
- 1st Version
 - Fabricated 40 chips, bare die
 - Extensively tested
- 2nd Version
 - Fabricated 104 chips, packaged
 - Main changes:
 - Decrease gain for hi & lo ranges
 - Decouple output serial clock
 - Allow 10 MHz output serial clock operation
 - Extensively tested at bench
 - Used in Vertical Slice

DCAL2 Testing – Charge Response

DCAL 2.1 - DAC = 128

Detector Configuration Revisited

Current Construction (RPC Shown):

PAD Board cannot have vias from circuitry above → 2 PCBs help with manufacturability & reduce cost

Pad Board & Front End Board Design

Blind vias to route sensitive signals to glue pads – needed to minimize contact with digital lines in FEB

8-layer FE-board (3 layers shown)

Also has blind vias

→ Very complex board design to minimize crosstalk & digital noise pickup

Measurement of FEB Noise Floor

Low Gain

High Gain

Distribution of Threshold DAC Values to give 10% Hits Tests on Bare Front End Board No C_S No Charge Injection

⇒ Excellent Noise Performance!

Front End Board Construction & Testing

- Have built & checked out 14 boards.
- Chips not tested in advance of assembly.
- Yield ~85%.

Vertical Slice Electronics Composition

Prototype Data Concentrator

Data Collector

•Functionality:

Receives data as packets
 Timestamp (24 bits) +
 Address (16 bits) +
 Hit pattern (64 bits)

- Groups packets in buffers (by matching timestamps)
- Makes buffers available for VME transfer
- Monitor registers (scalars)
- Provides slow control of front-end Allows read/write to DCAL chips or data concentrator boards
- Have built & checked out 3 boards.

Timing & Trigger Module (TTM)

Functionality:

- Provides synchronized clock & trigger signals to Data Concentrators, which in turn fan out to front ends
- Contains registers for timestamping triggers, histogramming, etc.

Have built & checked out 3 boards.

Tests with Cosmic Ray Hodoscope

First Cosmic Ray Events – 1 Plane, Triggered

Argonne

Vertical Slice at the Fermilab Testbeam

See José Repond's & Lei Xia's Talks

Next: Cubic Meter HCAL for the CALICE Prototype Section

- Building the Prototype Section
 - (40) 10,000 channel planes \rightarrow 400,000 channels total
 - 144 ASICs per plane
 - \rightarrow 5760 ASICs total
 - (Fab~9000)
 - Test with cosmic rays & testbeam
 - → Development In Progress...
- Primary Remaining Tasks:
 - Reduce FEB Costs
 - More Sophisticated DCOL
 - Understand ~1% Data Errors

Next Step: Build the Prototype Section

Actual Size RPC & Pad Board

Summary

Well advanced in electronics design

- 2 versions of ASIC, thoroughly tested at bench
- No show-stoppers in system performance
- Robust architecture ideal for detector development
- All system components prototyped & work well
- Mature checkout test stands & software

Vertical Slice

- Successful cosmic ray run with hodoscope
- Successful beam test at Fermilab (See Repond & Xia talks to follow...)
- We learned much DAQ bugs, noise, timing problems, communication problems, etc.
- Have proven electronics readout concept is Robust and Viable
- Believe we have demonstrated that this project is worth supporting \rightarrow \$\$\$

Next Step: Prototype Section

- Completing final design preparations now
- Begin production of components by beginning of 2008

Backup Slides

- Front-End consists of amplifier / shaper / baseline restorer
 - Charge preamp has selectable gain (1.5pF for GEMs, 9.9pF for RPCs)
 - CR-RC Shaper has selectable peaking times (65 nS, 85 nS, 100 nS, 125 nS)
 - BLR selectable (on or off)
 - 64 channels per chip

Chip Mask

- 64-bit mask register turn off bad or noisy channels
- Chip-wide enable bit turn off bad chips

Timestamp

- Implemented as a counter, using 10 MHz system clock
- Any Hit channel captures value of 24-bit timestamp counter (plus all 64 discriminator states)
- Dedicated counter reset for synchronizing all counters across the system

Triggering

- 20-stage pipeline for external trigger latency use or bypass
- Self-trigger simple OR of all discriminators
- External trigger input capability
- Each trigger (internal or external) captures 1 clock cycle of data
- Prompt generation of output trigger bit

Output

- 8-stage output FIFO can store 8 events, sequential or not
- Data consists of 24 bits of timestamp + 64 discriminator states \rightarrow 11 bytes
- Each byte is parsed into 8-bit frames \rightarrow 121 bits
- Data transmitted LVDS, serially using 10 MHz system clock 10 Mbps
 → 12.1 µSec to read 1 event (~80 KHz)
- Point-to-point connection No daisy-chaining or token-ring topologies

Slow Controls

- Set up FE conditions, trigger mode, mask register, pipeline enable, etc.
- Set up charge injection (8-bit DAC, uses dedicated ext. sig. TCAL)
- Chip has 5-bit addressing for communication in bussed operation
- Most registers R/W, can do global (broadcast) set/reset/write
- Data transmitted R/W, LVDS, serially using 10 MHz system clock

