Results of the Scintillator-ECAL Beam Test in 2007 at DESY

Oct 21-26th 2007 ALCPG meeting @ FNAL Satoru Uozumi (Shinshu University) for the GLD Calorimeter Group / CALICE Collaboration

The GLD Calorimeter

- Sampling calorimeter with W/Pb-scintillator sandwich structure with WLS fiber readout.
- Scintillator stirp structure to achieve fine granularity (strip size ~ 1 x 4.5 x 0.2 cm)
- Full MPPC Readout
 - Huge number of channels
 (~10M for ECAL,~4M for HCAL)
 - Placed inside 3T magnetic field
 - MPPC (Pixelated Avalanche Photodiode from Hamamatsu) is an ideal solution for readout sensor
- World's first trial to test such type of calorimeter.
 - MPPC is a new photon sensor,
 does it really work for calorimetry?
 - → Beam Test!

In 2007 Spring beam test has been performed at DESY using 1-6 GeV e+ beams. People from KNU, Kobe, Shinshu, Tokyo with great help from DESY people

3 Types of Modules

Uniformity of MIP Response inside Strip

MPPC

MIP data is taken without tungsten absorbers.

- Kuraray fiber readout strip shows the best uniformity.
- Direct readout strip is a little worse than fiber readout.
- Extruded shows significant non-uniformity (50% light attenuation at strip edge).

What was happening with the extruded scintillator?

- Some problems were found.
- Production of improved version will be done soon and its performance will be checked at KEK beam test in next month.

Energy Resolution, Linearity

- Energy resolution ~ $13\%/\sqrt{E} \oplus 2.5\%$ with fiber+direct config, almost consistent with expectation.
- Significant constant term with extruded + fiber config (Investigating, may due to strip non-uniformity?)
- Deviation from linearity < 2%, even without saturation correction of the MPPC response.

Position Dependence : Response to EM Shower

(taken with 3 GeV positron beam)

- ~ 11 % of peak-to-peak-variation with direct+fiber config.
- ~ 30 % variation with extruded + fiber config due to strip non-uniformity.

Position Dependence: Energy resolution

(taken with 3 GeV positron beam)

- Just a small variation is observed in almost of region.
- Extruded+fiber config shows a little worse resolution around strip boundary.

Summary

- Scintillator-strip EM calorimeter prototype is built and tested at DESY using 1-6 GeV positron beams.
- Preliminary result proves that the calorimeter is working well!
 - Energy resolution looks reasonable
 - Linearity is excellent even without MPPC saturation correction.
 - Non-uniformity of strip response gives some effects to calorimeter performance.
- Further analysis is ongoing:
 - MPPC saturation correction, etc...
 - Comparison with GEANT Simulation for precise understanding of the data.

Future Beam Tests

- KEK beam test to check improved extruded scintillator.
 - in Nov 2007 at KEK new electron beamline.
 - Scan strips with MIP to check the response uniformity.
- FNAL beam test in 2008 with larger prototype.
 - Test performance with various (e,K, μ , π ...) beams.
 - − Try π^0 → 2 γ reconstruction.
 - Combined test with Analog HCAL.

Backups

The Multi Pixel Photon Counter (MPPC)

- A Geiger-mode avalanche photo-diode with multi-pixel structure -

depth

The MPPC has lots of advantages

	Photomultiplier	MPPC
Gain	~10 ⁶	10 ⁵ ~10 ⁶
Photon Detection Eff.	0.1 ~ 0.2	~0.2 for 1600 pix. MPPC
Response	fast	fast
Photon counting	Yes	Great
Bias voltage	~ 1000 V	~ 70 V
Size	Small	Compact
B field	Sensitive	Insensitive
Cost	Very expensive!	Not very expensive
Dynamic range	Good	Determined by # of pixels
Long-term Stability	Good	Unknown
Robustness	decent	Unknown, presumably good
Noise (fake signal by thermions)	Quiet	Noisy (order of 100 kHz)

The MPPC is a promising photon sensor, and feasible for the GLD Calorimeter readout!

Excellent photon counting ability

Response Curve

Response curves measured with various width of LED pulses

- Linearity of 1600 pixel MPPC is not limited by number of pixels thanks to quick recovery!
- No significant influence from changing bias voltage.
- Time structure of the light pulse gives large effects in non-linear region.
- Knowing time structure of input light is important.

MIP Calibration

 MIP data for strip-by-strip energy calibration is taken without absorber.

Black ... Quality cuts only

Red ... Yellow strips have non-pedestal signal

Blue ... Green strips have no signal

Electromagnetic Shower Events

- Shower events taken with absorber and 1-6 GeV e⁺ beams.
- Signal from all the channels are summed after calibration, and energy spectra are obtained.

MIP Response Calibration

- Calibrate response of each strip using MIP signal.
- Positron beam events taken without tungsten.
- Center of all the strips has been scanned.

The Multi Pixel Photon Counter (MPPC)

- A Geiger-mode avalanche photo-diode with multi-pixel structure -

depth

The MPPC has lots of advantages

	Photomultiplier	MPPC
Gain	~10 ⁶	10 ⁵ ~10 ⁶
Photon Detection Eff.	0.1 ~ 0.2	~0.2 for 1600 pix. MPPC
Response	fast	fast
Photon counting	Yes	Great
Bias voltage	~ 1000 V	~ 70 V
Size	Small	Compact
B field	Sensitive	Insensitive
Cost	Very expensive!	Not very expensive
Dynamic range	Good	Determined by # of pixels
Long-term Stability	Good	Unknown
Robustness	decent	Unknown, presumably good
Noise (fake signal by thermions)	Quiet	Noisy (order of 100 kHz)

The MPPC is a promising photon sensor, and feasible for the GLD Calorimeter readout!

Excellent photon counting ability

Response Curve

Response curves measured with various width of LED pulses

- Linearity of 1600 pixel MPPC is not limited by number of pixels thanks to quick recovery!
- No significant influence from changing bias voltage.
- Time structure of the light pulse gives large effects in non-linear region.
- Knowing time structure of input light is important.