The ILD MDI/Integration Working Group Status and Plans

Karsten Buesser

ILD Session ALCPG'07 23. October 2007

$ILD = GLD \oplus LDC$

ILD Working Structure

- Joint Steering Board supervises the common effort to find a common detector concept and design which will lead to the submission of a common LOI
- Several working groups have been set up to tackle the critical joint design efforts:
 - Detector Optimisation
 - Conveners: Mark Thomson, Tamaki Yoshioka
 - MDI/Integration
 - Conveners: Toshiaki Tauchi, KB
 - Costing
 - Conveners: Akihiko Maki, Henri Videa

Machine-Detector Interface at the ILC

- There is no common definition I know about for MDI
- "Everything in the machine which has an impact on the detector and vice versa" comes closest
- Usually the following things are discussed under the MDI label:
 - Interaction Region Design (crossing angles, magnets, etc.)
 - Detector Forward Regions
 - Beam-induced Backgrounds
 - Diagnostics (Luminosity, Energy, Polarisation)
 - Detector Hall Design
 - Engineering Issues: e.g. Push-pull
- Basically all of these issues have been tackled at GLD and LDC in separated efforts (intense communication took always place)
- Now it is time to join the efforts and find common answers for the common Lol

ILD@ALCPG'07

Charge issued by the ILD Joint Steering Board:

- The MDI/working group is charged to produce a self-consistent design of the structure of the ILD detector from the viewpoint of machine-detector interface (MDI) and detector integration for the LOI that is to be submitted by October 1, 2008.
- Specifically, it covers the design of the beam pipes, magnets, iron return yoke, beam instrumentations, and their supports that require works by the detector group.
- Also, it should address general detector structure and assembly issues, where the aspects that affect the machine design will have initial priority. Beam background studies should be performed when necessary.
- The group should work closely with the machine people and the groups working on subdetectors that affect the structure of the ILD detector.
- (...)

MDI/Integration Working Plan

--ilC

- MDI/Integration working group has started recently
- First phone meeting (4. Oct) was used to discuss the status of the detector interaction region issues
 - Interaction region designs
 - Beam pipe designs
 - Forward regions and masking
 - Backgrounds
- Next working meeting (tba) will concentrate on detector integration issues
 - Assembly procedures
 - Mechanical design
 - Detector hall design
 - Push-pull issues

ILD MDI/Integration Communication

--ilC

- All MDI/Integration WG meetings are kept on Indico:
 - <u>http://ilcagenda.linearcollider.org/</u>
 - → Physics and Detectors
 - → Detector Concepts
 - → ILD
 - → MDI/Integration
- A mailing list has been set up
 - Subscribe at: <u>https://lists.desy.de/sympa/info/ild-detector-mdi</u>
 - Contact list at ild-detector-mdi@desy.de

LDC/GLD Interaction Region

30

Pairs and magnetic field

- Pairs are focused by solenoidal field in the detector towards the forward region
- Pairs trajectories envelope depends on magnetic field
- Careful desing of beam pipe is mandatory

T. Tauchi

LDC and GLD Forward Regions

- •Very similar designs:
- •L*>4.05 m
- 14 mrad crossing angle
- Tungsten absorber around BCal
- LumiCal/FCAL: precision luminosity measurement via Bhabha scattering
- BeamCal: pair signal measurement, hermeticity to <5 mrad
- LowZ absorber

ILD@ALCPG'07

Background Suppression

LDC 14 mrad Interaction Region in GEANT4

14 mrad crossing angle with anti-DID field (1:10)

A. Vogel

Forward region design (compressed view 1:2)

Beamstrahlung Pairs on the BeamCal

ILD@ALCPG'07

Pairs Induced Background

- GEANT4 simulations
- ~1/100 of one BX

VTX Hits

GLD and LDC results seem compatible

Neutrons from Pairs in the VTX

Statistics for neutrons are rather low ...

Neutron fluence: $2.3 \pm 4.0 \times 10^8$ n/cm²/y (no NIEL scaling done) A. Vogel

Problem (?): Beam-dump Backshine

Large crossing angle problem: direct line of sight between beam dump and IP (Beamstrahlung photons go to the same main dump as spent beam)

TPC Hits

TPC Hits from Pairs

Mokka hits in the TPC (overlay of 100 BX)

A. Vogel

GLD : Preference of L* > 4.7m

BeamCal for 2γ Veto

Efficient detection of high energy electrons is essential for search experiments

ILD@ALCPG'07

BeamCal as Beam Diagnostics Instrument

			reconstructed			
bp	unit	nom.	$2 mrad^*$	20mrad DiD	20mrad DiD + E_{γ}	14mrad antiDiD + E_{γ}
σ_z	$\mu \mathrm{m}$	300	300.75 ± 4.56	307.98 ± 4.72	299.80 ± 1.69	301.09 ± 1.65
ε_x	10^{-6} m rad	10	$11.99 \pm \textbf{7.61}$	— ± —	— ± —	9.94 ± 2.16
Δx	nm	0	4.77 ± 14.24	4.55 ± 8.14	4.57 ± 8.13	-3.84 \pm 11.08
α_v	rad	0	$0.002 \pm \textbf{0.016}$	0.010 ± 0.025	-0.001 ± 0.025	-0.071 \pm 0.017

- Analysis of pairs energy distribution leads to beam parameter determination
- GammaCal (further downstream) helps with this

LDC Detector Opening Concept

ILD@ALCPG'07

GLDc ready for CMS assembly style

ILD@ALCPG'07

GLDc, IRENG07 Pacman design and FD support 1.6m **TPC** extraction Z=11.5m Endcap open on for inner tracker the beam position maintenance at garage position C D Support tube В 4.5 m BDS tunnel φ4.5m QF1 Cryostat TPC Z=10 m Z=10 m Z=10.5m-> Z=10.5m--->

New Underground Hall Designs under Discussion

Underground hall with only one big shaft

Summary

- ILD MDI/Integration WG has started
- GLD and LDC interaction region follow similar design principles
 - →background suppression works well in both cases
- Differences will be studied and tried to be understood
- Roadmap to develop a joint interaction/forward region design as soon as ILD agrees on common geometries for the detector
- Integration and detector hall questions need joint engineering effort
 - Detector hall requirements need to be defined and defended to our machine colleagues → push-pull!
 - Detector integration strategy needs to be developed and followed up as the designs of the ILD detector and its sub-components gets better defined in the coming years
- Next WG meeting will concentrate on integration topics