Benchmarking SiD

Andrei Nomerotski SiD meeting, 23 Oct 2007

From Physics Studies to Benchmarking

- Entering a new phase: Lol in 2008 and EDR in 2010
- Emphasis of physics studies will shift towards
 - Evaluation and comparison of detector choices
 - Realities required by engineering: material (amount and distribution)
 - Realities required by reconstruction algorithms: tracking & PFA

Considerations

- Requirements to processes
 - Highlight physics case for ILC
 - Be generic so more physics scenarios are covered → signature oriented
 - Be sensitive to detector parameters
- Reality may decrease sensitivity to physics need to think about improved analysis techniques to recover
- Lol is a strong time constraint and it will streamline this activity
 - Decide on Lol plots early so work can be focussed on what's needed for Lol
- RD defined a set of 7+1 processes common to different concepts but also allowed to choose processes highlighting our strong features
 - Based on reduced list of Snowmass 2005 benchmarking report
 - Suggested common samples for all concepts
 - Software panel to monitor consistency of beam & physics bkg used by concepts

Benchmarking processes

- 0. Single e^{\pm} , μ^{\pm} , π^{\pm} , π^{0} , K^{\pm} , K_{S}^{0} , γ , $0 < |\cos \theta| < 1$, 0
- 1. $e^+e^- \to f\bar{f}$, $f = e, \tau, u, s, c, b$ at $\sqrt{s} = 0.091, 0.35, 0.5$ and 1.0 TeV;
- 2. $e^+e^- \to Z^0h^0 \to \ell^+\ell^- X$, $M_h = 120 \text{ GeV at } \sqrt{s} = 0.35 \text{ TeV}$;
- 3. $e^+e^- \to Z^0h^0$, $h^0 \to c\bar{c}$, $\tau^+\tau^-$, WW^* , $M_h = 120 \text{ GeV at } \sqrt{s} = 0.35 \text{ TeV}$;
- 4. $e^+e^- \to Z^0h^0h^0$, $M_h = 120 \text{ GeV at } \sqrt{s} = 0.5 \text{ TeV}$;
- 5. $e^+e^- \rightarrow \tilde{e}_R^+\tilde{e}_R^-$ at Point 1 at \sqrt{s} =0.5 TeV;
- 6. $e^+e^- \rightarrow \tilde{\tau}_1^+\tilde{\tau}_1^-$, at Point 3 at \sqrt{s} =0.5 TeV;
- 7. $e^+e^- \rightarrow \tilde{\chi}_1^+\tilde{\chi}_1^-/\tilde{\chi}_2^0\tilde{\chi}_2^0$ at Point 5 at \sqrt{s} =0.5 TeV;

reduced list from Snowmass 2005 report hepex/0603010

• + ee \rightarrow ZZ \rightarrow Zvv

Comments on Processes

- We started to discuss the benchmarking issues with all subsystems
 - Identify additional processes
 - Subsystems may have more than one hardware option. We should be positive about it - look for processes emphasizing strong sides of different options.
- We need to be realistic what we can be done in a year within constraints of manpower and tools

Benchmarking Vertexing

- 1. $e^{+}e^{-} \rightarrow f\bar{f}$, $f = e, \tau, u, s, c, b$ 3. $e^{+}e^{-} \rightarrow Z^{0}h^{0}, h^{0} \rightarrow c\bar{c}, \tau^{+}\tau^{-}, WW^{*}, M_{h} = 120 \text{ GeV at } \sqrt{s} = 0.35 \text{ TeV};$ 4. $e^{+}e^{-} \rightarrow Z^{0}h^{0}h^{0}, M_{h} = 120 \text{ GeV at } \sqrt{s} = 0.5 \text{ TeV};$ 6. $e^{+}e^{-} \rightarrow \tilde{\tau}_{1}^{+}\tilde{\tau}_{1}^{-}, \text{ at Point 3 at } \sqrt{s} = 0.5 \text{ TeV};$
- Main criteria: Highly efficient b&c – tagging
- Other possible processes $ee o H^0 A^0 o b ar{b} b ar{b}$
 - Charm tagging in dominant b $ee
 ightarrow ilde{t}_1 ilde{t}_1$ background
 - Taus: 3-prong vertexing for collimated decays, impact parameter to tag 1-prong decays

ZHH

Double Higgstrahlung: $e^+e^- \rightarrow H^0H^0Z^0$

- Key to understanding of Higgs potential – mechanism of symmetry breaking
- 4 b-jets in final state
- Low xsection/ Large SM backgrounds
- b/c tagging and b/bbar tagging are crucial

Benchmarking Tracking

- 0. Single e^{\pm} , μ^{\pm} , π^{\pm} , π^{0} , K^{\pm} , K_{S}^{0} , γ , $0 < |\cos \theta| < 1$, 0 $1. <math>e^{+}e^{-} \to f\bar{f}$, f = e, τ , u, s, c, b at $\sqrt{s} = 0.091$, 0.35, 0.5 and 1.0 TeV; 2. $e^{+}e^{-} \to Z^{0}h^{0} \to \ell^{+}\ell^{-}X$, $M_{h} = 120 \text{ GeV}$ at $\sqrt{s} = 0.35 \text{ TeV}$; 5. $e^{+}e^{-} \to \tilde{e}_{R}^{+}\tilde{e}_{R}^{-}$ at Point 1 at $\sqrt{s} = 0.5 \text{ TeV}$;
 - Main issues
 - Momentum resolution/Pattern recognition/V0 reconstruction :
 ALGORITHMS
 - Forward tracking
 - Other processes
 - Busy multi-jet events
 - Reconstruction of E_{cm}: ee → μμ
 - H→μμ

$H\rightarrow \mu\mu$

- One of important Higgs Br
- $M_{\mu\mu}$ distributions for NN>0.95 for signal and background summed

Benchmarking Calorimetry

- 0. Single e^{\pm} , μ^{\pm} , π^{\pm} , π^{0} , K^{\pm} , K_{S}^{0} , γ , $0 < |\cos \theta| < 1$, 0 GeV
- 3. $e^+e^- \to Z^0h^0$, $h^0 \to c\bar{c}$, $\tau^+\tau^-$, WW^* , $M_h = 120$ GeV at $\sqrt{s} = 0.35$ TeV;
- 4. $e^+e^- \to Z^0h^0h^0$, $M_h = 120 \text{ GeV at } \sqrt{s} = 0.5 \text{ TeV}$;
- 7. $e^+e^- \rightarrow \tilde{\chi}_1^+\tilde{\chi}_1^-/\tilde{\chi}_2^0\tilde{\chi}_2^0$ at Point 5 at \sqrt{s} =0.5 TeV;

Main issues

- Energy resolution, di-jet mass resolution
- Algorithms are probably even more important than in tracking
- Compensating CAL?

Other processes

- ee→WWvv (no beam energy constraint)
- π^0 reconstruction: tau polarization, b-tagging

Importance of π^0

- H→ττ process
- Tau polarization (from τ →ρν → π+πον) allows to determine CP properties of Higgs
- Separation of clusters and reconstruction of π^o requires excellent segmentation of EMCAL

 Also: using π⁰ to constrain the vertex mass → improvements in b-tagging

More Benchmarking

Muons

purity: punchthroughs, decays in flight

```
0. Single e^{\pm}, \mu^{\pm}, \pi^{\pm}, \pi^{0}, K^{\pm}, K_{S}^{0}, \gamma, 0 < |\cos \theta| < 1, 0  GeV
```

2.
$$e^+e^- \to Z^0h^0 \to \ell^+\ell^- X$$
, $M_h = 120 \text{ GeV at } \sqrt{s} = 0.35 \text{ TeV}$;

Forward systems

- Luminosity
- Electron veto (two-photon bkg)

6.
$$e^+e^- \rightarrow \tilde{\tau}_1^+\tilde{\tau}_1^-$$
, at Point 3 at \sqrt{s} =0.5 TeV;

Anything else?

Cosmology Motivated Scenarios

- Dark Matter is 25% of Universe – how to explain?
- In SUSY: small mass split between LSP and NLSP = small visible energy in the detector
 - ee → staus or stops/sbottoms
- Large two –photon backgrounds
 - Need to veto electron/positron in forward systems

Strategy of Benchmarking

- SiD is a concept with distinct features
- Optimization should be done within these distinct features
 - As opposed to a wide open optimization
 - Different from ILD which needs to decide how to average LDC & GLD
- Select a point in detector parameter space and check for an optimum around this point
 - Need to decide how to select the point and how to define the range of parameters

Tools for Benchmarking

- Most of results so far used Fast Monte Carlo
- Full simulation (SLIC) and reconstruction code are available and there are already results that used the full simulation chain
- Important to use uniform tools org.lcsim, JAS3, WIRED4
- Need a simulation chain which would work out of the box
- Need strong support from simulation group

Fast vs Full MC

Many questions can be addressed only with full MC

Two reasons to still use fast MC

- Some questions can be addressed with Fast MC
 - Ex. Optimization of Tracker and VD geometry
- Fast MC is adequate to develop analysis techniques
 - Replaced by full MC at later stage
- Valid question: will data structure change for fastto-full MC transition?

Timeline

- Oct 2008 submit Lol
- July 2008 Benchmarking studies ready
- Feb 2008 All key analyses on-going
- Dec 2007 First sample analysis
- Oct 2007 Decide what's needed for Lol

Summary

- New phase of physics studies
- Need to cover 7-8 "obligatory" processes
- Resumed benchmarking meetings: biweekly on Tuesday 9 am SLAC/ 11 am Fermilab/ 5 pm UK
- Talking to subsystem to identify additional processes
- Physics studies are ideal for newcomers, fast track way to contribute to Lol
- Talk to us about your favourite physics process or how you'd like to benchmark your favourite detector system!