Simulation Study of GEM Gating for LC TPC

Akimasa Ishikawa (Saga University)

LCTPC Asia Group Saga : A. Aoza, T. Higashi, A. Sugiyama, H. Tsuji Kinki : Y. Kato, K, Hiramatsu, T. Yazu Kogakuin : T. Watanabe TUAT : O. Nitoh, H. Ohta, K. Sakai, H. Bito KEK : K. Fujii, M. Kobayashi, H. Kuroiwa, T. Matsuda, S.Uno, R. Yonamine Tsinghua: Y. Gao, Y. Li, J. Li, L. Cao, Z. Yang, Q.Huirong MSU: A.Bacala, C. J. Gooc, R. Reserva, D. Arogancia

Why do we need Gate?

Gating Method

- Conventional Wire gating
 - Well understood
 - High electron transmission >90%
 - Large ExB effect under high B field
 - ~10% electron has deteriorated information
 - Should be designed to avoid wire vibration due to HV pulsing
 - Mechanical issue to string wires above MPGD
- GEM gating
 - Small ExB effect due to small structure
 - No vibration due to low voltage pulsing
 - Easy to mound on the multiplication GEM
 - Not well understood

Gate Open

Gate Close

GEM Gating

- F.Sauli Proposed GEM as gating device.
 - Electron transmission is the key.
 - Low voltage operation with wider GEM holes gives good transmission.
 - 70% transmission with Ar-CO₂=70: 30 under B=0T
- We can reproduce Sauli's result with Maxwell3D and Garfield for Efield calculation and electron/ion drift simulation.
- We try to optimize the GEM gating for LC TPC.
 - Ar-CF₄-isoC₄H₁₀
 - B=3T

F.Sauli et al. NIM A560, 269-277 (2006)

How to Understand the Electron Transmission

- Transmission is factorized in two part
 - Transmission = Collection eff. x Extraction eff.

Collection and Extraction

- Collection efficiency is known to be a function of Ed/Eh.
 - Collection efficiency is 100% when Ed/Eh<0.03 for 70um hole diameter.
 - This is relaxed when hole becomes larger.
 - Slightly worse in B field due to Lorentz angle than no B field.
- Extraction efficiency in B field is more complicated.
 - Entering position can be close to wall due to Lorentz angle
 - Area of penetrating field line becomes small as Eh increases.
 - Electron can spread due to diffusion
 - Absorption by wall
 - Follow field lines returning to GEM electrode

Transmission largely depends on gas.

Setup

- Same setup as Sauli's except hole shape, gas and B field.
 - Electron transmission is ~30% in B=3T $E_D=150$ [V/cm] $E_T=300$ [V/cm] (fixed) Hole pitch p=140[um] (fixed) hole diameter d=100[um] (fixed) Insulator thickness T_i=50[um] Electrode thickness T_e=5[um] Hole shape h=0[um], cylindrical GAS Ar-CF4-isoC4H10(96:3:1) B= 3[T]

Hole shape

h=0, 5, 10, 15 [um]

- Under non-B field, hole shape does not affect the transmission.
 - Electron follows field lines
- But under 3T B field, extraction efficiency is worse as h increases
 - entering position of electron can be close to GEM wall due to Lorentz angle
 - Electrons can not follow the field line due to Lorentz angle and are absorbed

Best parameter h=0 [um]

Insulator Thickness

T_i=12.5, 25, 50 [um]

- Both collection and extraction becomes better as T_i decreases
 - E field at edge of hole becomes larger
 → field line can be easy to penetrate center of hole
 - E_h becomes lower
 - □ Small diffusion → better extraction

Best parameter T_i =12.5 [um]

Insulator thickness 12.5[um] efficiency Insulator thickness 25[um] Insulator thickness 5 collection 0.8 0.6 0.4 Collection 0.2 1000 2000 3000 4000 5000 6000 extraction efficiency Insulator thickness 12.5[um] Insulator thickness 25[um] sulator thickness 50 Extraction 0.8 0.6 0.4 0.2 2000 6000 1000 3000 4000 5000 Eh[V/cm] Insulator thickness 12.5[um] electron transmission Insulator thickness 25[um] nsulator thickness 50/um Transmission 0.8 0.6 0.4 0.2 3000 6000 1000 2000 4000 5000

Eh[V/cm]

Ed dependence

E_d=50, 100, 150 [V/cm]

- Collection becomes better as E_d decreases.
 - E_d/E_h dependence
- Ed=50 [V/cm] gives best transmission but drift velocity is smaller than our requirement, 5 [cm/um].

So we choose Ed = 100 [V/cm]

Gas Concentration

 $Ar-CF_4-isoC_4H_{10} = 94:5:1, 96:3:1$

- For 94:5:1, we increase Ed to 120 [V/cm] to meet the requirement, drift velocity > 5 [cm/um]
- 94:5:1 gives better extraction due to small diffusion around 1000 [V/cm]

	default	optimized	improvement
Hole shape	Cylindrical	Cylindrical	0%
Insulator Thickness	50[um]	12.5[um]	55%
Electrode Thickness	5[um]	1[um]	15%
E _d	150[V/cm]	120[V/cm]	25%
Gas	Ar-CF ₄ -isoC ₄ H ₁₀ 96:3:1	Ar-CF ₄ -isoC ₄ H ₁₀ 94:5:1	5%
Transmission	30%	71%	135%

Ion Transmission

• $\Delta V_{\text{gate}}^{\text{close}}$ = -2V is enough for ion transmission of less than a few x10⁻⁴

- We simulate 20k ion events with the optimized setup for electron transmission but no ions pass the GEM gate.
- 90% C.L. upper limit on ion transmission by Gate is 1.2x10⁻⁴
- If ion suppression by multiplication GEM is included, ion transmission is less than a few x 10⁻⁶ for double GEM.

Towards Measurement

- We are preparing to measure the electron transmission with 25um thick and \$\ophi=90um GEM\$
 - OT at Saga : Ar-isoC₄H₁₀
 - 1T at KEK : Ar-CF₄-isoC₄H₁₀
- Discussion to Scienergy on the production of optimized GEM
 - Plan to purchase 12.5um thick polyimide
 - Wet etching may be better to make larger hole.

Summary

- We studied simulation of GEM gating
- E fields, GEM structure and gas mixture are optimized
 - Lower E_d, thinner GEM and lower diffusion gas
 - Electron transmission 71%
 - \rightarrow about 15% degradation on position and dE/dx resolutions
 - Ion transmission less than 1.2 x 10⁻⁴
 - a few x 10⁻⁶ including self ion suppression capability
- Low voltage operation is enough for gating

•
$$\Delta V_{gate}^{open} = 5 [V]$$

•
$$\Delta V_{gate}^{close} = -2 [V]$$

- We are preparing to measure the electron transmission under 1T
 - Need to measure it under 3~4T, of course.

Backup

Self-Suppression Capability of Ion feed back

- MicroMEGAS
 - A few x 10⁻³
- GEM
 - Triple GEM optimized case : a few x 10⁻³
 - Double GEM non-optimized case : a few x 10⁻²

