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W,Z W,Z jet Simple study of M  versus E  & E  using FASTMCΔ Δ

            e ee W ud
H Z uu
γ ν ν

ν ν ν

− −→ →
→ →       e e eH Z uuν ν ν→ →

No resolution loss from jet-finding, neutrinos, 
or particles outside fid. vol.
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Use the following single particle calorimeter 
resolutions in FASTMC to mimick PFAresolutions in FASTMC to mimick PFA
jet energy resolution versus jet energy 
f j t i 50 G V E 250 G Vjetfor jet energies  50 GeV < E  < 250 GeV: 
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Light quark jets ee→qq

GLD PFA LDC PFA FASTMC with 
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                        The approximate expression for the two-jet mass  isM
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At least in the FASTMC,  the , ,  terms are not very important:m m
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Error on ( *) from measurement ofBR H WW→
1

C i C S 2004 001

Error on ( ) from measurement of 

 at 360 GeV, L=500 fb*e e ZH qqWW qqqql

BR H WW

sν+ − −→

→

→ → =
J.-C. Brient, LC-PHSM-2004-001

E/ E 60% 30%
i i

Δ = →
equiv to  1.4  Lumi×
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0 0 0 0
1 1 1 1 1 1e e W W qqqqχ χ χ χ χ χ+ − + − + −→ → →% % % % % %
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106.2 GeV

500 G V

M χ =
%

500 GeVs =

1
198.4 GeVM χ + =

%

200 4 G VM
1

200.4 GeVM χ + =
%

Due to W mass the energy 
spectrum doesn't shift to 
left or right as in sleptonleft or right as in slepton 
case but instead get wider
or narrower  all energies⇒
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199 4 GeVM =

0 0 0 0
1 1 1 1 1 1e e W W qqqqχ χ χ χ χ χ+ − + − + −→ → →% % % % % %

Analysis using org.lcsim Fast MC 
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e e ZHH qqbbbb+ − → →
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Plan for ZHH Analysis
• Perform analysis on qqbbbb channel only at Ecm=500 GeV 

i 0% l t l i ti U l i F t MCassuming 0% electron polarization. Use org.lcsim Fast MC 
simulation of baseline SiD.  This MC includes a reasonable 
l ith f i h d t k l t dalgorithm for smearing charged track angles, curvature and 

impact parameters.  Calorimeter simulation consists of  
simple single ne tral particle smearing ith EM resol tionsimple single neutral particle smearing with EM resolution 
for photons and HAD res for n,K0L.

l i l i l l i l i• Scale single particle calorimeter resolutions to get a 
particular ΔEjet .

• Use org.lcsim ZVTOP for b-tagging
• Perform analysis both with and without final state gluon 
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, , ,      non-Gaussian Parameterizatione e qqHH q u d s+ − → =
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ZHH Preselection
R iRequire:

| cos | 0.95
0 85

thrust

thrust
θ <

< 0.85
( ) 50 GeVtot
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P z

<
<

_ 110 GeV for at least 1 thrust hemisphere

0
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M
N

>

=

6 8
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jetsN
N

≤ ≤

≥ 35

( ) / ( ) 0.8 for all 6 jets
chrg tracks

jet jet

N
E photons E total

≥

<
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btagNN
• Use udscb jets in ZHH events to train
• Perform jet analysis on charged and neutral objects 

g

btagNN
j y g j

allowing number of jets to vary; for each jet perform 
ZVTOP analysis as implemented in org.lcsim 
U h f ll i i bl i h b l• Use the following variables in the btag neural net:

jetE jet

vtxE
M
Pt-Corrected
# S d V ti

vtx

vtx

M
M

# Secondary Vertices
# Unassociated Large Impact Parameter Tracks 
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b jets

ZHH events

btagNN

udsc jets
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charm mis-id efficiency versus b-tag efficiency

R. Hawkings,  LC-PHSM-2000-021 SiD ZHH AnalysisSiD ZHH Analysis

,e e ZHH tt+ − →

500 GeVs =
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,ZZ ZH bbbb→ tt bbcsqq→

Feed neural net all jet pair
masses where jets are 
ordered according to jetg j
btag neural net value 
(jet 1 is the most b-like, 
jet 2 is 2nd most b like

ZZZ bbqqqq→ ZZH bbqqqq→
jet 2 is 2nd most b-like,
etc. )

6

j=1

Require

 ( ) 3.5btagNN j >∑

ZHH
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6

Jet pair masses where jets are ordered according to jet btag neural net value 

(jet 1 is the most b-like jet 2 is 2nd most b- Requirelike etc ) ( ) 3 5bNN j >∑
j=1

(jet 1 is the most b like,  jet 2 is 2nd most b Require like,etc. ) ( ) 3.5btagNN j >∑
ZHH
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6

Jet pair masses where jets are ordered according to jet btag neural net value 

(jet 1 is the most b-like jet 2 is 2nd most b- Requirelike etc ) ( ) 3 5bNN j >∑
j=1

(jet 1 is the most b like,  jet 2 is 2nd most b Require like,etc. ) ( ) 3.5btagNN j >∑
tt
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,ZZ ZH bbbb→ tt bbcsqq→Neural net based on
b-tag ordered jet pair

2 2
HH tt

2 2
ZZH ZZZ

2 2

masses and ,  ,

,   (only 3 

b f

χ χ
χ χ

ZZZ bbqqqq→ ZZH bbqqqq→

2 2
HH ZZZ

2 2
tt ZZH

comb. for ,

only 6 comb. for , )

χ χ
χ χ

ZZZ bbqqqq→ ZZH bbqqqq→
QCD rad turned ffo

ZHH
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6 6
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w/o gluon rad

BR(H bb) 0 678

+

BR(H bb)=0.678→
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+ − →
→
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L fb−

=
= hhhgΔ

f
hhhg

E/ E 60% 30%
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Δ = →

×equiv to  1.4  Lumi×
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,ZZ ZH bbbb→ tt bbcsqq→Neural net based on
b-tag ordered jet pair

2 2
HH tt

2 2
ZZH ZZZ

2 2

masses and ,  ,

,   (only 3 

b f

χ χ
χ χ

ZZZ bbqqqq→ ZZH bbqqqq→

2 2
HH ZZZ

2 2
tt ZZH

comb. for ,

only 6 comb. for , )

χ χ
χ χ

ZZZ bbqqqq→ ZZH bbqqqq→
QCD rad turned on

ZHH
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BR(H bb)=0 678→

with gluon rad

BR(H bb) 0.678→

hhhgΔ      
e e ZHH

qqbbbb

+ − →
→

500s GeV=

hhhg

12000L fb−=
w/o gluon rad

E/ E 60% 30%
equiv to  1.4  Lumi
Δ = →

×
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jet

jet

j j

E
Analysis must be redone with  that reflects current PFA status.
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jet jet 90

jet jet

E E
For now replot triple Higgs coupling error vs.  using existing results with 
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ZHH Conclusions

• The error on the coupling gHHH varies between 32 % and 38%  as 
the jet energy resolution is varied between 3.3% and 6.7% j gy
assuming no gluon radiation, Ecm=500 GeV, L=2000 fb-1 , and the 
final state ZHH qqbbbbb. This corresponds to an effective 
luminosity gain of 40% as the jet energy resolution is improvedluminosity gain of 40% as the jet energy resolution is improved 
from 6.7% to 3.3%.

• When final state gluon radiation is switched on, the error on gHHHg , gHHH 
deteriorates to a range of 53 % to  62%  for jet energy resolutions 
between 3.3% and 6.7%   This problem may be solved with a 
more sophisticated jet algorithm and better b/c tagging Note thatmore sophisticated jet algorithm and better b/c tagging.  Note that 
we currently force reconstructed particles into 6 jets, which may 
not be the best approach in the presence of hard gluon radiation.  
Better b/c tagging, as well as  b/bbar discrimination, can reduce 
combinatorics and provide b/c weighted jet energy corrections.
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ZHH Conclusions (cont.)

• The Ecm=500 GeV ZHH study is an interesting 
detector benchmark study.  However, results from y ,
this study of the Higgs self coupling error  do not 
reflect the ultimate precision on the Higgs selfreflect the ultimate precision on the Higgs self 
coupling.  In addition to improvement to the 

l i f ZHH bbbb th d h danalysis of ZHH qqbbbb, methods have and 
will be developed to exploit other Higgs decay 
modes. Also, analysis at Ecm=1000 GeV will lead 
to a significant improvement.  A precision of g p p
10% can eventually be achieved when data at 
E =500 GeV and 1000 GeV are combined
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Ecm 500 GeV and 1000 GeV are combined.


