Jet and photon signatures

R. Frey, University of Oregon

Physics Signature-II: Jet and Photon Energy Measurements - Hornets Nest (WH8X) (13:30-17:00)

- Conveners: FREY, Raymond; MAGILL, Stephen; PETRIELLO, Frank; RASPEREZA, Alexei; TAIT, Tim

time	title	presenter		
13:30	Requirements for jet-energy resolution	BARKLOW, Tim		
13:50	General Features of SUSY Signals at the ILC: Jet and Photon Resolution	BERGER, Carola		
14:10	Jet reconstruction results I	MAGILL, Stephen		
14:30	Jet reconstruction II - PFA Status & Results from Iowa	CHARLES, Matthew		
14:45	Jet Reconstruction III: Studies with PandoraPFA	COWAN, Ray		
15:00	break			
15:30	Higgs decaying to jets and photons	DOBRESCU, Bogdan FOX, Patrick		
15:50	Prospects of using Z->jj for the decay independent detection of Higgs	RASPEREZA, Alexei		
16:05	pi0 reconstruction in jets	WILSON, Graham		
16:20	New Physics with photon signatures	MARTIN, Steve		
16:35	H->gamma gamma: mini-review and effect of EM calorimeter resolution	PETRIELLO, Frank		
16:50	photons in tau id and polarization	FREY, Raymond		

our role

Are we neglecting or undervaluing important jet/photon considerations?

- Are there interesting physics processes we are neglecting?
- What are the signatures?
- Are there interesting physics signatures which can drive certain detector characteristics?
- Does this imply revised detector optimizations?

Bring theorists and experimenters together to discuss this.

Possible default benchmarks**

0. Single e^{\pm} , μ^{\pm} , π^{\pm} , π^{0} , K^{\pm} , K^{0}_{S} , γ , $0 < \cos \theta < 1$, $0 GeV$
1. $e^+e^- \rightarrow f\bar{f}, f = e, \tau, u, s, c, b$ at $\sqrt{s}=0.091, 0.35, 0.5$ and 1.0 TeV;
2. $e^+e^- \rightarrow Z^0 h^0 \rightarrow \ell^+\ell^- X$, $M_h = 120 \text{ GeV at } \sqrt{s} = 0.35 \text{ TeV};$
3. $e^+e^- \rightarrow Z^0 h^0$, $h^0 \rightarrow c\bar{c}$, $\tau^+\tau^-$, WW^* , $M_h = 120$ GeV at $\sqrt{s} = 0.35$ TeV;
4. $e^+e^- \rightarrow Z^0 h^0 h^0$, $M_h = 120 \text{ GeV}$ at $\sqrt{s} = 0.5 \text{ TeV}$;
5. $e^+e^- \rightarrow \tilde{e}_R^+\tilde{e}_R^-$ at Point 1 at $\sqrt{s}=0.5$ TeV;
6. $e^+e^- \rightarrow \tilde{\tau}_1^+ \tilde{\tau}_1^-$, at Point 3 at $\sqrt{s}=0.5$ TeV;
7. $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- / \tilde{\chi}_2^0 \tilde{\chi}_2^0$ at Point 5 at $\sqrt{s}=0.5$ TeV;

**M. Battaglia, T. Barklow, M. E. Peskin, Y. Okada, S. Yamashita and P.M. Zerwas, ``Physics benchmarks for the ILC detectors," In the Proceedings of 2005 International Linear Collider Workshop (LCWS 2005), Stanford, California, 18-22 Mar 2005, pp 1602} [arXiv:hep-ex/0603010].

Jet and photon signatures

- There has been a lot of emphasis in the detector communities on jets and jet signatures
- There are very good reasons for this:
 - New Physics appearing in multi-jet final states is likely to be difficult/impossible to reconstruct at LHC \Rightarrow an ILC imperative.
 - Furthermore, "LEP-like" performance (e.g. W W \rightarrow jets $\,$ at LEP2) may not suffice when
 - signal/background is low
 - a well-resolved quantity is required (e.g. $M(2j)=M_Z vs M(2j)=M_W$)
 - beam constraints are difficult/impossible, e.g. the New Physics may require reconstruction of $j\,j\,j\,\nu\nu$
 - Implementing a solution is one of the critical drivers of detector design (and requires a lot of work) ⇒ address this early
- Every physics process/analysis will have its own optimization.
- Detectors must be able to handle *both* jet *and* other (photon) signatures
- Because there is much more to the ILC physics than jets.

benchmarks – short list

0. Single
$$e^{\pm}$$
, μ^{\pm} , π^{\pm} , π^{0} , K^{\pm} , K_{S}^{0} , γ , $0 < |\cos \theta| < 1$, $0 GeV
1. $e^{+}e^{-} \rightarrow f\bar{f}$, $f = e, \tau, u, s, c, b$ at $\sqrt{s}=0.091, 0.35, 0.5$ and 1.0 TeV;
2. $e^{+}e^{-} \rightarrow Z^{0}h^{0} \rightarrow \ell^{+}\ell^{-}X$, $M_{h} = 120$ GeV at $\sqrt{s}=0.35$ TeV;
3. $e^{+}e^{-} \rightarrow Z^{0}h^{0}$, $h^{0} \rightarrow c\bar{c}$, $\tau^{+}\tau^{-}$, WW^{*} , $M_{h} = 120$ GeV at $\sqrt{s}=0.35$ TeV;
4. $e^{+}e^{-} \rightarrow Z^{0}h^{0}h^{0}$, $M_{h} = 120$ GeV at $\sqrt{s}=0.5$ TeV; CAL
5. $e^{+}e^{-} \rightarrow \tilde{e}_{R}^{+}\tilde{e}_{R}^{-}$ at Point 1 at $\sqrt{s}=0.5$ TeV;
6. $e^{+}e^{-} \rightarrow \tilde{\tau}_{1}^{+}\tilde{\tau}_{1}^{-}$, at Point 3 at $\sqrt{s}=0.5$ TeV;
7. $e^{+}e^{-} \rightarrow \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}/\tilde{\chi}_{2}^{0}\tilde{\chi}_{2}^{0}$ at Point 5 at $\sqrt{s}=0.5$ TeV;$

The larger list...

TABLE II: Benchmark reactions for the evaluation of ILC detectors

	Process and	Energy	Observables	Target	Detector	Notes
	Final states	(TeV)		Accuracy	Challenge	
Higgs	$ee \to Z^0 h^0 \to \ell^+ \ell^- X$	0.35	$\mathrm{M}_{\mathrm{recoil}},\sigma_{Zh},\mathrm{BR}_{bb}$	$\delta\sigma_{Zh} = 2.5\%, \delta \mathrm{BR}_{bb} = 1\%$	Т	{1}
	$ee ightarrow Z^0 h^0, \ h^0 ightarrow b ar{b} / c ar{c} / au au$	0.35	Jet flavour , jet (E, \vec{p})	$\delta M_h = 40 \text{ MeV}, \ \delta(\sigma_{Zh} \times BR) = 1\%/7\%/5\%$	V	{2}
	$ee ightarrow Z^{0}h^{0}, h^{0} ightarrow WW^{*}$	0.35	$M_Z, M_W, \sigma_{qq} W_{W*}$	$\delta(\sigma_{Zh} \times BR_{WW^*}) = 5\%$	С	{3}
	$ee ightarrow Z^0 h^0 / h^0 u ar{ u}, h^0 ightarrow \gamma \gamma$	1.0	$M_{\gamma\gamma}$	$\delta(\sigma_{Zh} \times BR_{\gamma\gamma}) = 5\%$	С	{4}
	$ee ightarrow Z^0 h^0 / h^0 u ar{ u}, h^0 ightarrow \mu^+ \mu^-$	1.0	$M_{\mu\mu}$	5σ Evidence for $M_h = 120$ GeV	Т	{5}
	$ee ightarrow Z^0 h^0, h^0 ightarrow ext{invisible}$	0.35	σ_{qqE}	5σ Evidence for BR _{invisible} = 2.5%	С	{6}
	$ee ightarrow h^0 u ar{ u}$	0.5	$\sigma_{bb u u}, M_{bb}$	$\delta(\sigma_{ u u h} imes \mathrm{BR}_{bb}) = 1\%$	С	{7}
	$ee ightarrow t ar{t} h^{ m O}$	1.0	σ_{tth}	$\delta g_{tth}{=}5\%$	С	{8}
	$ee ightarrow Z^0 h^0 h^0, h^0 h^0 u ar{ u}$	0.5/1.0	$\sigma_{Zhh},\sigma_{ u u hh},M_{hh}$	$\delta g_{hhh}{=}20/10\%$	С	{9}
SSB	$ee ightarrow W^+W^-$	0.5		$\Delta\kappa_{\gamma}, \lambda_{\gamma} = 2 \cdot 10^{-4}$	V	{10}
	$ee ightarrow W^+ W^- u ar{ u} / Z^0 Z^0 u ar{ u}$	1.0	σ	$\Lambda_{*4}, \Lambda_{*5} = 3 { m ~TeV}$	С	{11}
SUSY	$ee \rightarrow \tilde{e}_R^+ \tilde{e}_R^-$ (Point 1)	0.5	E_e	$\delta M_{\tilde{\chi}_1^0} = 50 \text{ MeV}$	Т	{12}
	$ee \rightarrow \tilde{\tau}_1^+ \tilde{\tau}_1^-, \tilde{\chi}_1^+ \tilde{\chi}_1^- (\text{Point 1})$	0.5	$E_\pi,E_{2\pi},E_{3\pi}$	$\delta(M_{\hat{\tau}_1} - M_{\hat{\chi}_1^0}) = 200 \text{ MeV}$	Т	{13}
	$ee ightarrow ilde{t}_1 ilde{t}_1$ (Point 1)	1.0		$\delta M_{ ilde{t}_1} {=} 2 ~{ m GeV}$		{14}
- CDM	$ee \rightarrow \tilde{\tau}_1^+ \tilde{\tau}_1^-, \tilde{\chi}_1^+ \tilde{\chi}_1^- \text{ (Point 3)}$	0.5		$\delta M_{\tilde{\tau}_1} = 1 \text{ GeV}, \ \delta M_{\tilde{\chi}_1^0} = 500 \text{ MeV},$	F	{15}
	$ee ightarrow ilde{\chi}^0_2 ilde{\chi}^0_3, \ ilde{\chi}^+_1 ilde{\chi}^1 \ (ext{Point } 2)$	0.5	M_{jj} in $jj \not\!\!\!E, M_{\ell\ell}$ in $jj\ell\ell\not\!\!\!/E$	$\delta \sigma_{\tilde{\chi}_2 \tilde{\chi}_3} = 4\%, \ \delta (M_{\tilde{\chi}_2^0} - M_{\tilde{\chi}_1^0}) = 500 \ { m MeV}$	С	{16}
	$ee \rightarrow \tilde{\chi_1^+} \tilde{\chi_1^-} / \tilde{\chi_i^0} \tilde{\chi_j^0} $ (Point 5)	0.5/1.0	ZZ₽, WW₽	$\delta \sigma_{\hat{\chi}\hat{\chi}} = 10\%, \ \delta(M_{\hat{\chi}^0_2} - M_{\hat{\chi}^0_1}) = 2 \ \mathrm{GeV}$	С	{17}
	$ee \to H^0 A^0 \to b\bar{b}b\bar{b}$ (Point 4)	1.0	Mass constrained M_{bb}	$\delta M_A = 1 \text{ GeV}$	С	{18}
-alternative	$ee \to \tilde{\tau}_1^+ \tilde{\tau}_1^-$ (Point 6)	0.5	Heavy stable particle	$\delta M_{ ilde{ au}_1}$	Т	{19}
SUSY	$ ilde{\chi}^0_1 o \gamma + ot\!$	0.5	Non-pointing γ	$\delta c \tau = 10\%$	С	{20}
breaking	$ \tilde{\chi}_1^{\pm} \to \tilde{\chi}_1^0 + \pi_{soft}^{\pm} \text{ (Point 8)} $	0.5	Soft π^{\pm} above $\gamma\gamma$ bkgd	5σ Evidence for $\Delta \tilde{m} = 0.2-2$ GeV	F	{21}
Precision SM	$ee \rightarrow t\bar{t} \rightarrow 6 \ jets$	1.0		5σ Sensitivity for $(g-2)_t/2 \le 10^{-3}$	V	{22}
	$ee ightarrow far{f}~(f=e,\mu, au;b,c)$	1.0	$\sigma_{f\bar{f}}, A_{FB}, A_{LR}$	5σ Sensitivity to $M_{Z_{LR}} = 7$ TeV	V	{23}
New Physics	$ee \rightarrow \gamma G ~(\text{ADD})$	1.0	$\sigma(\gamma + E)$	5σ Sensitivity	С	{24}
	$ee \to KK \to f\bar{f} \ (RS)$	1.0			Т	$\{25\}$
Energy/Lumi	$ee ightarrow ee_{fwd}$	0.3/1.0		$\delta M_{top} = 50 \text{ MeV}$	Т	{26}
Meas.	$ee ightarrow Z^0 \gamma$	0.5/1.0			Т	{27}

R Frey jet/photon at ALCPG07

Jet reconstruction: Particle Flow Algorithm talks

- Steve Magill and Mat Charles: Illustrations of PFA technique successes and pitfalls
- Ray Cowan + Marcel Stanitzki: Running Mark Thomson's PandoraPFA on different detector configurations

- "Technical" and physics benchmarks for PFA development (Steve Magill)
 - $e^+e^- \rightarrow ZZ \rightarrow qqvv$
 - $e^+e^- \rightarrow ZZ \rightarrow qqqq$ vs $e^+e^- \rightarrow HZ \rightarrow qqqq$
 - $e^+e^- \rightarrow t \text{ tbar} \rightarrow \text{jets}$
 - $e^+e^- \rightarrow qq$ at 500 GeV R Frey jet/photon at ALCPG07

ZH, $H \rightarrow X$ with $Z \rightarrow jets$?

Alexei Raspereza

At ILC Higgs boson can be detected independent of its decay mode, even if it decays into invisible particles $H \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0$

ILC "golden" channel : $ZH \rightarrow (ee, \mu\mu)X$

Peak in (ee,µµ) recoil mass spectrum

⇒ model independent extraction of ZZH coupling : $\sigma(ZH) \propto g^2_{HZZ}$

• $\sqrt{s} = 350 \text{ GeV}, L = 500 \text{ fb}^{-1}, Z \rightarrow ee, \mu\mu$ $\Rightarrow \delta\sigma/\sigma = 2.6(3.1)\% m_{H} = 120(160) \text{ GeV}$ [P.Garcia-Abia, W.Lohmann, EPJDirect C2 (2000)]

Can we also exploit *Z*→*jj* decays?

ZH, $Z \rightarrow jets$ (contd)

Obtains σ (ZH) with errors approx. 9% (stat) \oplus 4% (sys) for 350 GeV, 50 fb⁻¹

Take results of these studies with caution

- Simple toy MC analysis used, no full simulation of detector response, no realistic event reconstruction
- Not all backgrounds are considered [$e^+e^- \rightarrow Zee, We_V \dots$]
- Not all Higgs decays studied [$H \rightarrow \gamma \gamma$, γZ , *invisible...*]
- Analysis is far from optimal : unsophisticated procedure of jet assignment for the Z decay exploited, simple cut-based selection applied

R Frey jet/photon at ALCP

Observability of SUSY processes for a panoply of SUSY models

Carola Berger (with Gainer, Hewett, Lillie, Rizzo)

1. Models with staus accessible at 500 GeV

$$e^+e^-
ightarrow ilde{ au}^+ ilde{ au}^-
ightarrow au^+ au^- ilde{\chi}_1^0 ilde{\chi}_1^0$$

- Include SM backgrounds, beamstrahlung, etc
- Pipe through org.lcsim fast Monte Carlo for SiD detector concept
- Of 28 models, only 18 (11) are visible with tau id B (A)
- Detection issue: 2 photon background \rightarrow confusion with tau id:

$$e^+e^- \rightarrow \gamma\gamma ee \rightarrow \mu(\mu)e(e)$$
 vs $\tau\tau \rightarrow \mu e$ (4ν)

Need tracking for $50 < \theta < 200 \text{ mrad}$

SUSY observability (contd)

2. Associated neutralino production:

$\begin{array}{ll} \mathsf{e} + \mathsf{e} &\to \tilde{\chi}_2^0 \tilde{\chi}_1^0 \to Z/H \tilde{\chi}_1^0 \tilde{\chi}_1^0, \ Z/H \to jj, l^+l^- \\ \\ \mathsf{or} & \quad \tilde{\chi}_2^0 \tilde{\chi}_1^0 \to W^\pm \tilde{\chi}^\mp \tilde{\chi}_1^0, \ W \to jj, \ \tilde{\chi}^\pm \to \tilde{\chi}_1^0 + \mathsf{very \ soft \ jets} \end{array}$

Requires very good di-jet mass resolution

Only 5 of 46 accessible models are seen

Dijet Invariant Mass, S+B, e- = +80% polarization

non-standard Higgs decays to jets or photons

Bogdan Dobrescu and Patrick Fox

- $h \rightarrow A^{\circ}A^{\circ} \rightarrow 4\gamma$, 4j, 2 γ 2j all possible
- Allows Higgs mass well below 115 GeV
- Depending on decay mode and characteristics, may be difficult or impossible to observe at LHC

Photon energy resolution

Frank Petriello

- Not a driver for jet energy resolution (if a < \approx 0.20, $\Delta E/E = a / \sqrt{E\gamma}$)
- What about $h \rightarrow \gamma \gamma$?
- $h \rightarrow \gamma \gamma$ is sensitive to (other) new physics
- branching fraction measurements better than 20% are interesting
- background parameterized from Boos, et al., hep-ph/0011366

Isolated photon signatures

Steve Martin

I. GMSB

$$\tilde{N}_1 \to \gamma \tilde{G}$$

with a decay width:

$$\Gamma = 20\kappa \left(\frac{m_{\tilde{N}_1}}{100 \text{ GeV}}\right)^5 \left(\frac{\sqrt{F}}{10 \text{ TeV}}\right)^{-4} \text{ eV}$$

Here κ is a neutralino-photino mixing angle of order 1, and

 $\sqrt{F} = {
m mass} \ {
m scale} \ {
m of} \ {
m SUSY} \ {
m breaking}$

At ILC:

$$e^+e^- \to \tilde{N}_1 \tilde{N}_1 \to \gamma \gamma + I\!\!\!E$$

is a possible process, with N1 decay lengths which could be ~1 m (or more; or less)

isolated photons (contd)

II. Unparticles

Monophoton signature from Unparticle Stuff

Constrained by LEP2 single photon results \rightarrow ILC

Photons for tau polarization

Example
from SUSY
$$e^+e^- \rightarrow \tilde{\tau}_1^+ \tilde{\tau}_1^-$$
, $\tilde{\tau}_1^\pm \rightarrow \tilde{\chi}_1^0 \tau^\pm$
 $\tilde{\chi}_1 = N_{11}\widetilde{B} + N_{12}\widetilde{W} + N_{13}\widetilde{H}_1 + N_{14}\widetilde{H}_2$

- mSUGRA: $\tilde{\chi}_1 \sim \widetilde{B} \Rightarrow P_\tau \approx +1$
- non-universal SUGRA: $\tilde{\chi}_1 \sim \tilde{H} \Rightarrow P_\tau \approx \cos^2 \theta_\tau \sin^2 \theta_\tau$

• AMSB:
$$\tilde{\chi}_1 \sim \widetilde{W} \Rightarrow P_\tau \approx -1$$

• GMSB: $\tilde{\tau}_1^{\pm} \to \tilde{G}\tau^{\pm} \Rightarrow P_{\tau} \approx \sin^2 \theta_{\tau} - \cos^2 \theta_{\tau}$

Godbole, Guchait, Roy, Phys Lett B (2005)

	$\tau^{+} \rightarrow \rho^{+} \nu$ $\rightarrow (\pi^{+} \pi^{0} \nu) \nu$
$\tau \to a_1 \nu$ $\tau \to \pi^{\pm} \pi^+ \pi^-$	
0.09	A L
$0.45 \\ 0.58$	
0.13 0.17	

RF

$\tau \to \rho \nu$	$\gamma \to \pi \nu$	$\gamma \rightarrow e \nu \nu$	$\gamma \rightarrow \mu \nu \nu$	$\gamma \rightarrow a_1 \nu$
				$a_1 \to \pi^{\pm} \pi^+ \pi^-$
0.25	0.12	0.18	0.17	0.09
0.49	0.58	0.22	0.22	0.45
0.58	0.58	0.27	0.27	0.58
0.44	0.30	0.06	0.06	0.13
0.47	0.22	0.07	0.07	0.17
	$\begin{array}{c} 0.25\\ 0.49\\ 0.58\\ 0.44\\ 0.47\end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Summary

- It was great to bring theorists and experimentalists together to discuss common issues.
- Learned about
 - some interesting signatures for New Physics
 - some new twists on well-known signatures
 - some potential detector issues
- There are interesting cross-connections between jets+photons and other signature groups which should be explored
 - Tau id and analysis
 - Heavy flavor reconstruction
 - etc

theorist-experimenter interactions example

• Past studies: $e+e- \rightarrow t$ tbar $\rightarrow 4$ jets, 6 jets

TESLA TDR

- \Rightarrow top neutral-current anomalous couplings (\rightarrow TESLA TDR, etc)
- Found out that there now are predicted effects from various BSM models!

Form factor	SM value	$\sqrt{s} = 500 \mathrm{GeV}$		$\sqrt{s} = 800 \mathrm{GeV}$	
		p = 0	p = -0.8	p = 0	p = -0.8
F_{1V}^Z	1		0.019		
F_{1A}^Z	1		0.016		
$F_{2V}^{\gamma,Z} = (g-2)^{\gamma,Z}{}_t$	0	0.015	0.011	0.011	0.008
$\operatorname{Re} F_{2A}^{\gamma}$	0	0.035	0.007	0.015	0.004
${\rm R}ed_t^\gamma~[10^{-19}~{\rm e~cm}]$	0	20	4	8	2
$\operatorname{Re} F_{2A}^Z$	0	0.012	0.008	0.008	0.007
Re d_t^Z [10 ⁻¹⁹ e cm]	0	7	5	5	4
$Im F_{2A}^{\gamma}$	0	0.010	0.008	0.006	0.005
$\operatorname{Im} F_{2A}^Z$	0	0.055	0.010	0.037	0.007
F^W_{1R}	0	0.030	0.012		
ImF_{2R}^W	0	0.025	0.010		