

Physics Working Group I: Missing Energy Summary

Jim Alexander, Carola F. Berger, Tao Han, Konstantin Matchev, Bill Morse, Graham Wilson

ALCPG07 - Oct. 26th, 2007

Contributions

hai	rge,	Contributions	

- Contributions
- Charge to ConvenersMissing?
- Benchmark modes for ME
- Specific Models
- ME from γ -Background
- Summary and Outlook

- Something out of nothing: dark matter observation and mass determination in photon + missing energy events at the ILC by Partha Konar
- Preliminary Study of BeamCal Capabilities in the Detection of the Two Photon Signal by Uriel Nauenberg
- Solving the LHC Inverse Problem at ILC: Close Mass Chargino Analyses by James Gainer
- Higgs decays to invisible modes at the LHC and ILC by Heather Logan
- Electroweak Baryogenesis in the (n)MSSM and ILC Physics by Carlos Wagner
- Missing Energy in the channel stop to neutralino and charmand mass precision measurement by Caroline Milstene

Charge to Conveners

Charge, Contributions
Contributions
Charge to Conveners

• Missing?

Benchmark modes for ME

Specific Models

ME from γ -Background

Summary and Outlook

1. What does the physics require of the detector, in terms of coverage and capability. Are present detectors missing some important physics?

- 2. How does the detector performance tradeoff with physics output? What performance do we really need?
- 3. Is the technology "there" for the required detectors and performance? What needs more work?

0. How do we find something that's missing?

Charge, Contributions

Charge to Conveners

• Missing?

Benchmark modes for ME

Specific Models

ME from γ -Background

Summary and Outlook

Charge, Contributions

Contributions
Charge to Conveners
Missing?

Benchmark modes for ME

Specific Models

ME from γ -Background

Summary and Outlook

Identify one particular process with distinct signature, analyze in maximally model-independent way OR

Pick a specific model with a well-motivated set of parameters and study the possible signatures

In both cases, we cannot view the ILC as an isolated machine. Obviously, input from the LHC is expected. But input from cosmology, flavor physics,... which is available right now should (and is) taken into account.

And the SM background needs to be known as precisely as possible.

Benchmark modes for Missing Energy

Charge, Contributions

- Benchmark modes for ME
- Benchmark modes for
- Missing Energy
- Photon + ME WIMPs
- Photon + ME Forward Coverage
- Photon + ME MSSM
- Photon + ME MSSM, Results
- Photon + ME MSSM, Results
- Invisible Higgs
- Invisible Higgs at the LHC
- LHC Higgs Mass Measurement
- Invisible Higgs at the ILC
- Invisible Higgs LHC vs. ILC
- Small Mass Splittings MSSM
- Radiative Chargino Search
 Cuts
- Radiative Charginos Results

Specific Models

ME from $oldsymbol{\gamma}$ -Background

Summary and Outlook

Photon + ME

- Invisible Higgs
- Small mass splittings

Missing Energy

Results from WMAP

1400

800

3.00 200

Multipolo moment (i)

前

from C. Wagner's talk

us

Charge, Contributions

Benchmark modes for ME

- Benchmark modes for **Missing Energy**
- Photon + ME WIMPs
- Photon + ME Forward Coverage
- Photon + ME MSSM
- Photon + ME MSSM, Results
- Photon + ME MSSM, Results
- Invisible Higgs
- Invisible Higgs at the LHC
- LHC Higgs Mass Measurement
- Invisible Higgs at the ILC
- Invisible Higgs LHC vs. ILC
- Small Mass Splittings MSSM
- Radiative Chargino Search - Cuts
- Radiative Charginos Results

Specific Models

ME from γ -Background

Summary and Outlook

Universe density

Physics WG I: Missing Energy - 6/37

Photon + ME – WIMPs

P.Konar, K. Kong, H. Lee, K. Matchev, M. Perelstein

Charge, Contributions

- Benchmark modes for ME
- Benchmark modes for
- Missing Energy

● Photon + ME – WIMPs

- Photon + ME Forward Coverage
- Photon + ME MSSM
- Photon + ME MSSM, Results
- Photon + ME MSSM, Results
- Invisible Higgs
- Invisible Higgs at the LHC
- LHC Higgs Mass Measurement
- Invisible Higgs at the ILC
- Invisible Higgs LHC vs. ILC
- Small Mass Splittings MSSM
- Radiative Chargino Search
 Cuts
- Radiative Charginos Results

Specific Models

ME from γ -Background

Summary and Outlook

Assume dark matter entirely due to a single new stable particle, WIMP χ . Dark matter relic abundance depends on cross section for

$$\chi\chi o X_i ar{X_i}$$

At colliders we study (ILC: $X_i = e^+$)

$$X_i \bar{X}_i o \chi \chi$$

Detailed balance equation for spin-averaged cross sections:

$$\sigma(X_i \bar{X}_i o \chi \chi) = \sigma(\chi \chi o X_i \bar{X}_i) 2 rac{v_X^2 (2S_X + 1)^2}{v_\chi^2 (2S_\chi + 1)^2}$$

v relative velocity in c.m. frame, S spin.

Physics WG I: Missing Energy - 7/37

Photon + ME – WIMPs

P.Konar, K. Kong, H. Lee, K. Matchev, M. Perelstein

Charge, Contributions

Benchmark modes for ME

 Benchmark modes for Missing Energy

● Photon + ME – WIMPs

- Photon + ME Forward Coverage
- Photon + ME MSSM
- Photon + ME MSSM, Results
- Photon + ME MSSM, Results
- Invisible Higgs
- Invisible Higgs at the LHC
- LHC Higgs Mass Measurement
- Invisible Higgs at the ILC
- Invisible Higgs LHC vs.
 ILC
- Small Mass Splittings MSSM
- Radiative Chargino Search
 Cuts
- Radiative Charginos –
 Results

Specific Models

ME from $oldsymbol{\gamma}$ -Background

Summary and Outlook

Assume fraction $\kappa_e = \sigma(\chi\chi \to e^+e^-)/\sigma_{an}$, c.m. energy slightly above 2χ threshold,

$$\sigma(e^+e^- \to \chi\chi) = 2^{2(J_0-1)} \kappa_e \sigma_{an} \frac{4}{(2S_{\chi}+1)^2} \left(1 - \frac{4M_{\chi}}{s}\right)^{1/2+J_0}$$

 J_0 angular momentum of dominant partial wave in χ annihilation, M_{χ} mass of WIMP.

Photon + ME – WIMPs

P.Konar, K. Kong, H. Lee, K. Matchev, M. Perelstein

Charge, Contributions

Benchmark modes for ME

Benchmark modes for **Missing Energy**

- Photon + ME WIMPs
- Photon + ME Forward Coverage
- Photon + ME MSSM
- Photon + ME MSSM, Results
- Photon + ME MSSM. Results
- Invisible Higgs
- Invisible Higgs at the LHC
- LHC Higgs Mass Measurement
- Invisible Higgs at the ILC
- Invisible Higgs LHC vs. ILC
- Small Mass Splittings MSSM
- Radiative Chargino Search - Cuts
- Radiative Charginos Results

Specific Models

ME from γ -Background

Summary and Outlook

Assume fraction $\kappa_e = \sigma(\chi \chi \rightarrow e^+ e^-) / \sigma_{an}$, c.m. energy slightly above 2χ threshold,

$$\sigma(e^+e^- \to \chi\chi) = 2^{2(J_0-1)} \kappa_e \sigma_{an} \frac{4}{(2S_{\chi}+1)^2} \left(1 - \frac{4M_{\chi}}{s}\right)^{1/2+J_0}$$

 J_0 angular momentum of dominant partial wave in χ annihilation, M_{χ} mass of WIMP.

Tag on extra photon from beam-/bremstrahlung. If γ sufficiently soft ($E_{\gamma} \ll \sqrt{s} - M_{\chi}$) or collinear, γ radiation factorizes from hard cross section,

$$\frac{d\sigma(e^+e^- \to \chi\chi\gamma)}{dxd\cos\theta} \approx \frac{\alpha}{\pi} \frac{1 + (1-x)^2}{x} \frac{1}{\sin^2\theta} \hat{\sigma}(e^+e^- \to \chi\chi)$$

$$x = 2E_\gamma/\sqrt{s}$$

ALCPG07 - Oct. 26th, 2007

Physics WG I: Missing Energy - 8/37

Photon + ME – Forward Coverage

P. Konar, K. Kong, H. Lee, K. Matchev, M. Perelstein

Charge, Contributions

Benchmark modes for ME

Benchmark modes for

Missing Energy

Photon + ME – WIMPs

Photon + ME – Forward Coverage

Photon + ME – MSSM

- Photon + ME MSSM, Results
- Photon + ME MSSM, Results
- Invisible Higgs
- Invisible Higgs at the LHC

LHC - Higgs Mass Measurement

• Invisible Higgs at the ILC

Invisible Higgs – LHC vs.
 ILC

 Small Mass Splittings – MSSM

Radiative Chargino Search
 – Cuts

 Radiative Charginos – Results

Specific Models

ME from $oldsymbol{\gamma}$ -Background

Summary and Outlook

SM backgrounds from $e^+e^- \rightarrow \nu \bar{\nu} \gamma$, $e^+e^- \rightarrow e^+e^- \gamma$.

 $e^+e^-
ightarrow e^+e^-\gamma$ can be eliminated by cut on p_T^{γ} .

Photon + ME – Forward Coverage

P. Konar, K. Kong, H. Lee, K. Matchev, M. Perelstein

Charge, Contributions

- Benchmark modes for ME
- Benchmark modes for Missing Energy
- Photon + ME WIMPs

Photon + ME – Forward Coverage

- Photon + ME MSSM
- Photon + ME MSSM, Results
- Photon + ME MSSM, Results
- Invisible Higgs
- Invisible Higgs at the LHC
- LHC Higgs Mass Measurement
- Invisible Higgs at the ILC
- Invisible Higgs LHC vs. ILC
- Small Mass Splittings –
 MSSM
- Radiative Chargino Search
 Cuts
- Radiative Charginos Results

Specific Models

ME from γ -Background

Summary and Outlook

• $p_{T_{\gamma}} > 7.5 \ GeV$ (suppress Bhabha : mask calorimeter acceptance of 1°) • χ non-relativistic and E_{γ} below threshold- $\frac{\sqrt{s}}{2} \left(1 - \frac{8M_{\chi}^2}{s} \right) \le E_{\gamma} \le \frac{\sqrt{s}}{2} \left(1 - \frac{4M_{\chi}^2}{s} \right)$ Discovery reach for 1.0 $\mathcal{L} = 500 f b^{-1}$ ILC 0.8 5σ No polarization. 0.6 For p-annihilator WIMP K. (red, blue) band include a 0.4 systematic uncertainty of 30 0.3% 0.2 0.0 100 150 200 50 M_{γ} (GeV)

Photon + ME – Forward Coverage

P. Konar, K. Kong, H. Lee, K. Matchev, M. Perelstein

Charge, Contributions

- Benchmark modes for ME
- Benchmark modes for Missing Energy
- Photon + ME WIMPs

Photon + ME – Forward Coverage

- Photon + ME MSSM
- Photon + ME MSSM, Results
- Photon + ME MSSM, Results
- Invisible Higgs
- Invisible Higgs at the LHC
- LHC Higgs Mass
 Measurement
- Invisible Higgs at the ILC
- Invisible Higgs LHC vs. ILC
- Small Mass Splittings MSSM
- Radiative Chargino Search
 Cuts
- Radiative Charginos Results

Specific Models

ME from γ -Background

Summary and Outlook

• $\sin \theta_{\gamma} > 0.1$

- $p_{T_{\gamma}} > 3.0 \ GeV$ (suppress Bhabha : BeamCAL acceptance of 0.38°)
- χ non-relativistic and E_{γ} below threshold-
 - $\frac{\sqrt{s}}{2} \left(1 \frac{8M_{\chi}^2}{s} \right) \le E_{\gamma} \le \frac{\sqrt{s}}{2} \left(1 \frac{4M_{\chi}^2}{s} \right)$

Photon + ME – MSSM

C. F. Berger, J. Gainer, J. L. Hewett, B. Lillie, T. G. Rizzo

Charge, Contributions

- Benchmark modes for ME
- Benchmark modes for Missing Energy
- Photon + ME WIMPs
- Photon + ME Forward Coverage

● Photon + ME – MSSM

- Photon + ME MSSM, Results
- Photon + ME MSSM, Results
- Invisible Higgs
- Invisible Higgs at the LHC
- LHC Higgs Mass
 Measurement
- Invisible Higgs at the ILC
- Invisible Higgs LHC vs. ILC
- Small Mass Splittings MSSM
- Radiative Chargino Search
 Cuts
- Radiative Charginos Results

Specific Models

ME from γ -Background

Summary and Outlook

Study 242 "random" points in MSSM parameter space (which are problematic at the LHC), tens of analysis channels. Of the 242 points, 91 only produce $\tilde{\chi}_1^0$ s at a 500 GeV collider and nothing else \Rightarrow 500 GeV may not be enough!. Thus one of the channels studied:

$$e^+e^-
ightarrow ilde{\chi}^0_1 ilde{\chi}^0_1 \gamma$$

The main backgrounds are 1. $\nu \bar{\nu}$ production with associated photon 2. $\tilde{\nu} \tilde{\nu}^*$ production with associated photon

ilc

Photon + ME – MSSM, Results

ilc

Photon + ME – MSSM, Results

ilc

ME from γ -Background

Summary and Outlook

Photon + ME – MSSM, Results

C. F. Berger, J. Gainer, J. L. Hewett, B. Lillie, T. G. Rizzo

Photon Energy in GeV

Photon + ME – MSSM, Results

C. F. Berger, J. Gainer, J. L. Hewett, B. Lillie, T. G. Rizzo

Charge, Contributions

Benchmark modes for ME

- Benchmark modes for Missing Energy
- Photon + ME WIMPs
- Photon + ME Forward Coverage
- Photon + ME MSSM
- Photon + ME MSSM, Results
- Photon + ME MSSM, Results
- Invisible Higgs
- Invisible Higgs at the LHC
- LHC Higgs Mass Measurement
- Invisible Higgs at the ILC
- Invisible Higgs LHC vs.
 ILC
- Small Mass Splittings MSSM
- Radiative Chargino Search
 Cuts
- Radiative Charginos Results

Specific Models

ME from γ -Background

Summary and Outlook

At 500 GeV, out of 242 (semi-)random points in MSSM parameter space (= models), 91 have only $\tilde{\chi}_1^0$ s accessible.

With 500 fb⁻¹, 80% e^- polarization (no positron polarization), and the current SiD design = no tracking below 142 mrad, forward coverage down to 5 mrad, only 3 of these models are observable above background.

SPS1a' has much higher event rate compared to all of these 242 points (holds for other channels, too).

Improvement: positron polarization: background $\sigma_L^B \sim 50\sigma_R^B$, signal either $\sigma_L^S \sim \sigma_R^S$ or $\sigma_L^S \ll \sigma_R^S$.

Carola F. Berger ALCPG07 – Oct. 26th, 2007

Physics WG I: Missing Energy - 12/37

Invisible Higgs

H. Logan

Charge, Contributions

Benchmark modes for ME

- Benchmark modes for Missing Energy
- Photon + ME WIMPs
- Photon + ME Forward Coverage
- Photon + ME MSSM
- Photon + ME MSSM, Results
- Photon + ME MSSM, Results

Invisible Higgs

- Invisible Higgs at the LHC
- LHC Higgs Mass Measurement
- Invisible Higgs at the ILC
- Invisible Higgs LHC vs.
 ILC
- Small Mass Splittings MSSM
- Radiative Chargino Search
 Cuts
- Radiative Charginos Results
- **Specific Models**
- ME from γ -Background

Summary and Outlook

If neutral (quasi)stable particle with mass $< m_H/2$ and EW strength coupling to H, then $H \rightarrow$ invisible the dominant decay mode. E.g.

- $H
 ightarrow ilde{\chi}_1^0 ilde{\chi}_1^0$ (MSSM, NMSSM)
- $H \rightarrow SS$ (scalar dark matter)
- $H \rightarrow KK$ neutrinos (extra dimensions)

•••

Production mechanisms:

 $\blacksquare \mathsf{VBF} \to H_{\mathsf{inv}}$

Higgs-strahlung off Z

Invisible Higgs at the LHC

H. Logan

Charge, Contributions

Benchmark modes for ME

- Benchmark modes for Missing Energy
- Photon + ME WIMPs
- Photon + ME Forward Coverage
- Photon + ME MSSM
- Photon + ME MSSM, Results
- Photon + ME MSSM, Results
- Invisible Higgs

Invisible Higgs at the LHC

- LHC Higgs Mass Measurement
- Invisible Higgs at the ILC
- Invisible Higgs LHC vs.
 ILC
- Small Mass Splittings MSSM
- Radiative Chargino Search
 Cuts
- Radiative Charginos Results
- **Specific Models**
- ME from γ -Background
- Summary and Outlook

95% CL exclusion limits with 30 fb^{-1} at LHC

Charge, Contributions

LHC - Higgs Mass Measurement

H. Davoudiasl, T. Han, H. Logan

Signal rate depends on m_H :

Higgsstrahlung – branching ratio assumption drops out

LHC - Higgs Mass Measurement

H. Davoudiasl, T. Han, H. Logan

Charge, Contributions

Benchmark modes for ME	В	encl	hmarl	k mod	es for	ME
------------------------	---	------	-------	-------	--------	----

- Benchmark modes for Missing Energy
- Photon + ME WIMPs
- Photon + ME Forward Coverage
- Photon + ME MSSM
- Photon + ME MSSM, Results
- Photon + ME MSSM, Results
- Invisible Higgs
- Invisible Higgs at the LHC
- LHC Higgs Mass Measurement
- Invisible Higgs at the ILC
- Invisible Higgs LHC vs. ILC
- Small Mass Splittings MSSM
- Radiative Chargino Search
 Cuts
- Radiative Charginos Results
- **Specific Models**

ME from $oldsymbol{\gamma}$ -Background

Summary and Outlook

Higgs mass determination from ratio method with 10 (100) fb $^{-1}$:						
m_h (GeV)	120	140	160			
$r = \sigma_S(Zh) / \sigma_S(WBF)$	0.132	0.102	0.0807			
$(dr/dm_h)/r (1/\text{GeV})$	-0.011	-0.013	-0.013			
Total uncert., $\Delta r/r$	41% (16%)	54% (20%)	72% (25%)			
Δm_h (GeV)	36 (14)	43 (16)	53 (18)			

Davoudlasi, Han & H.L. (2004)

Ratio method:

 $\Delta m_H = 36/43/53 \ (14/16/18) \text{ GeV}$ with 10 (100) fb⁻¹

Assumed $\xi^2 = 1$ for signal statistics.

Invisible Higgs at the ILC

H. Logan

Charge, Contributions

Benchmark modes for ME

- Benchmark modes for Missing Energy
- Photon + ME WIMPs
- Photon + ME Forward Coverage
- Photon + ME MSSM
- Photon + ME MSSM, Results
- Photon + ME MSSM, Results
- Invisible Higgs
- Invisible Higgs at the LHC
 LHC Higgs Mass
- Measurement

Invisible Higgs at the ILC

- Invisible Higgs LHC vs.
 ILC
 Small Mass Splittings –
- MSSM
- Radiative Chargino Search
 Cuts
- Radiative Charginos Results
- Specific Models

ME from γ -Background

Summary and Outlook

Study Higgsstrahlung, $ZH \rightarrow \mu\mu X$, measure recoil mass

[TESLA TDR] $m_H = 120$ GeV, $\sqrt{s} = 350$ GeV, $\int \mathcal{L} = 500$ fb⁻¹, $\mu\mu$ only

Invisible Higgs at the ILC

H. Logan

Charge, Contributions

Benchmark modes for ME

- Benchmark modes for Missing Energy
- Photon + ME WIMPs
- Photon + ME Forward Coverage
- Photon + ME MSSM
- Photon + ME MSSM, Results
- Photon + ME MSSM, Results
- Invisible Higgs
- Invisible Higgs at the LHC
- LHC Higgs Mass Measurement
- Invisible Higgs at the ILC
- Invisible Higgs LHC vs.
 ILC
- Small Mass Splittings MSSM
- Radiative Chargino Search
 Cuts
- Radiative Charginos Results
- **Specific Models**

ME from γ -Background

Summary and Outlook

Higgstrahlung, Z ightarrow q ar q

Discovery reach:

500 fb⁻¹ at $\sqrt{s} = 350$ GeV

 5σ discovery for BR_{inv} down to $\sim 2.5\%$ for $m_H = 120$ GeV $\sim 1.5\%$ for $m_H = 140$, 160 GeV

Physics WG I: Missing Energy - 17/37

Invisible Higgs – LHC vs. ILC

Charge, Contributions

Benchmark modes for ME

- Benchmark modes for Missing Energy
- Photon + ME WIMPs
- Photon + ME Forward Coverage
- Photon + ME MSSM
- Photon + ME MSSM, Results
- Photon + ME MSSM, Results
- Invisible Higgs
- Invisible Higgs at the LHC
- LHC Higgs Mass Measurement
- Invisible Higgs at the ILC
- Invisible Higgs LHC vs. ILC
- Small Mass Splittings MSSM
- Radiative Chargino Search
 Cuts
- Radiative Charginos Results
- **Specific Models**

ME from γ -Background

Summary and Outlook

Can improve precision of mass measurement at ILC by running near threshold (Bambade, Richard). Much less luminosity needed for comparable precision because of higher cross section and less background under Higgs recoil peak.

Final score: Invisible Higgs mass determination at the LHC indirect from ratio of rates, $\Delta M \sim 15$ GeV. At the ILC direct determination from recoil spectrum, model independent, $\Delta M \sim 30$ MeV.

Ability to run ILC at variable c.m. energy greatly improves precision.

H. Logan

Small Mass Splittings – MSSM

Charge, Contributions

Benchmark modes for ME

- Benchmark modes for Missing Energy
- Photon + ME WIMPs
- Photon + ME Forward Coverage
- Photon + ME MSSM
- Photon + ME MSSM, Results
- Photon + ME MSSM, Results
- Invisible Higgs
- Invisible Higgs at the LHC
- LHC Higgs Mass Measurement
- Invisible Higgs at the ILC
- Invisible Higgs LHC vs. ILC
- Small Mass Splittings MSSM
- Radiative Chargino Search
 Cuts
- Radiative Charginos Results
- **Specific Models**

ME from γ -Background

Summary and Outlook

C. F. Berger, J. Gainer, J. L. Hewett, B. Lillie, T. G. Rizzo

Recall, study of 242 "random" points in MSSM parameter space. Search strategy for charginos depends on $\Delta m = m_{\tilde{\chi}_1^\pm} - m_{\tilde{\chi}_1^0}$.

- $\Delta m \lesssim m_{\pi}$: Stable charged particle search
- $m_\pi \lesssim \Delta m \lesssim 1$ GeV: Radiative chargino search
- $\Delta m \gtrsim 1$ GeV:
 - 4 jet + missing energy
 - 2 jet, muon + missing energy
 - 2 muons + missing energy

Radiative Chargino Search – Cuts

C. F. Berger, J. Gainer, J. L. Hewett, B. Lillie, T. G. Rizzo

Charge, Contributions

Benchmark modes for ME

- Benchmark modes for Missing Energy
- Photon + ME WIMPs
- Photon + ME Forward Coverage
- Photon + ME MSSM
- Photon + ME MSSM, Results
- Photon + ME MSSM, Results
- Invisible Higgs
- Invisible Higgs at the LHC
- LHC Higgs Mass Measurement
- Invisible Higgs at the ILC
- Invisible Higgs LHC vs.
 ILC
- Small Mass Splittings MSSM
- Radiative Chargino Search
 Cuts
- Radiative Charginos Results
- **Specific Models**
- ME from γ -Background
- Summary and Outlook

Main backgrounds from $e\gamma$ and $e^+e^- \rightarrow W^+W^-$. Following Riles et al (1990), OPAL, Gunion and Mrenna (2001):

- 1. Exactly one photon with $p_T > 0.035 \sqrt{s}$ and no other charged tracks within 25 degrees
- 2. No identified (i.e. above 142 mrad) electrons or muons in the event
- **3.** 1 <number of charged tracks < 11
- **4.** $E_{
 m vis, \, other \, particles} E_{oldsymbol{\gamma}} < 0.35 \sqrt{s}$
- 5. $rac{p_{T,vis}}{E_{T,vis}} > 0.4$ and $rac{p_{T,vis}}{p_{tot}} > 0.2$.

6.
$$M_{recoil} = \sqrt{s} \sqrt{\left(1 - 2 E_{\gamma} / \sqrt{s}
ight)} > 160 \ {
m GeV}$$

Physics WG I: Missing Energy - 20/37

Radiative Charginos – Results

ilc

Radiative Charginos – Results

MSSM – Sleptons

C. F. Berger, J. Gainer, J. L. Hewett, B. Lillie, T. G. Rizzo

Charge, Contributions

Benchmark modes for ME

Specific Models

MSSM – Sleptons

- MSSM Sleptons, Results, SiD
- Stop Mass Measurement
- Stop Mass Measurement Results
- Stop Mass Relic Abundance
- nMSSM
- nMSSM ILC Mass Measurements

ME from $oldsymbol{\gamma}$ -Background

Summary and Outlook

$$e^+e^-
ightarrow ilde{l}^+ ilde{l}^-
ightarrow l^+ l^- ilde{\chi}_1^0 ilde{\chi}_1^0$$

Main SM backgrounds:

- W pair production with each W decaying leptonically
- Z pair production with one Z decaying to charged leptons the other to neutrinos
- Processes with γ in initial state ($\gamma\gamma > l^+l^-$ or processes where an initial electron or photon is kicked into the detector)

MSSM – Sleptons, Results, SiD

MSSM – Sleptons, Results, SiD

MSSM – Sleptons, Results, SiD

Stop Mass Measurement

A. Freitas, C. Milstene, M. Schmitt, A. Sopczak

Charge, Contributions

Benchmark modes for ME

Specific Models

MSSM – Sleptons

 MSSM – Sleptons, Results, SiD

• Stop Mass Measurement

- Stop Mass Measurement Results
- Stop Mass Relic Abundance

nMSSM

nMSSM – ILC Mass Measurements

ME from γ -Background

Summary and Outlook

Idea: measure ratio Y between events at threshold and at peak of stop pair production cross section, channel

$$e^+e^-
ightarrow ilde{t} \overline{ ilde{t}} \overline{ ilde{t}}
ightarrow c \overline{c} ilde{\chi}_1^0 ilde{\chi}_1^0$$

Cross section very sensitive to stop mass.

Stop Mass Measurement – Results

A. Freitas, C. Milstene, M. Schmitt, A. Sopczak

Charge, Contributions

Benchmark modes for ME

Specific Models

MSSM – Sleptons

 MSSM – Sleptons, Results, SiD

Stop Mass Measurement

 Stop Mass Measurement – Results

Stop Mass – Relic
 Abundance

● nMSSM

nMSSM – ILC Mass Measurements

ME from γ -Background

Summary and Outlook

Multi-jet final states due to gluon radiation and fragmentation. Charm tagging at higher c.m. energy challenge for vertex detector.

Two analyses, one cut-based, one neural net (iterative discriminant analysis), both yield similar results:

No polarization: Unambiguous discovery

+80%/-60% beam polarization: precision measurement

Error on stop mass of order 0.45 GeV.

Stop Mass – Relic Abundance

A. Freitas, C. Milstene, M. Schmitt, A. Sopczak

Charge, Contributions

Benchmark modes for ME

Specific Models

- MSSM Sleptons
- MSSM Sleptons, Results, SiD
- Stop Mass Measurement
- Stop Mass Measurement Results
- Stop Mass Relic Abundance
- nMSSM
- nMSSM ILC Mass Measurements

ME from γ -Background

Summary and Outlook

If light scalar top partner with mass $< m_t$, and $m_{\tilde{t}} - m_{\tilde{\chi}_1^0} \sim$ 15-30 GeV, co-annihilation between stop and LSP \Rightarrow correct relic abundance.

nMSSM

C. Balasz, M. Carena, A. Freitas, C. Wagner

Charge, Contributions

Benchmark modes for ME

Specific Models

- MSSM Sleptons
- MSSM Sleptons, Results, SiD
- Stop Mass Measurement
- Stop Mass Measurement Results
- Stop Mass Relic Abundance

● nMSSM

nMSSM – ILC Mass Measurements

ME from γ -Background

Summary and Outlook

nMSSM has extra singlet chiral superfield. Consequences:

- Baryon asymmetry without need for light squarks
 - A. Menon, D. Morrissey, C. Wagner
- *m_h* naturally above experimental bounds
- \$\tilde{\chi}_1^0\$ admixture of fermion component of singlet and Higgsinos, \$m_{\tilde{\chi}_1^0} < 70\$ GeV
- Iightest Higgs decays invisibly into $ilde{\chi}_1^0$ s
- charginos and neutralinos naturally light

nMSSM – ILC Mass Measurements

C. Balasz, M. Carena, A. Freitas, C. Wagner

Charge, Contributions

Benchmark modes for ME

Specific Models

- MSSM Sleptons
- MSSM Sleptons, Results, SiD
- Stop Mass Measurement
- Stop Mass Measurement Results
- Stop Mass Relic Abundance
- nMSSM
- nMSSM ILC Mass
 Measurements
- ME from γ -Background
- Summary and Outlook

Jets from Chargino Production

Information on the mass difference of the lightest chargino and neutralino may be obtained form the energy distributin of the jets proceeding from chargino decay $\tilde{\chi}_1^{\pm} \rightarrow \chi_1^0 W^{\pm}$ $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow W^+ W^- \tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow jjl^{\pm} + E$

Physics WG I: Missing Energy - 28/37

nMSSM – ILC Mass Measurements

C. Balasz, M. Carena, A. Freitas, C. Wagner

Charge, Contributions

Benchmark modes for ME

Specific Models

MSSM – Sleptons

 MSSM – Sleptons, Results, SiD

• Stop Mass Measurement

• Stop Mass Measurement – Results

 Stop Mass – Relic Abundance

nMSSM

nMSSM – ILC Mass
 Measurements

ME from γ -Background

Summary and Outlook

Threshold Scan for Chargino Pair Production

 $P(e^+)/P(e^-) = \operatorname{right/left}.$

 $10\,{\rm fb^{-1}}$ luminosity is spent per point, amounting to total of $60\,{\rm fb^{-1}}$

Physics WG I: Missing Energy - 28/37

Very Forward Calorimetry Collaboration

Charge, Contributions

Benchmark modes for ME

Specific Models

ME from γ -Background

- Very Forward Calorimetry Collaboration
- 2-Photon Background
- 2-Photon BeamCal
- 2-Photon BeamCal Study
- 2-Photon BeamCal, Cuts

Summary and Outlook

ilr

2-Photon Background

T. Dunn, J. Gill, G. Oleinik, U. Nauenberg, J. Yu, F. Yi

ilc

Charge, Contributions

ME from γ -Background

Summary and Outlook

Specific Models

Collaboration 2-Photon Background 2-Photon – BeamCal

2-Photon – BeamCal

T. Dunn, J. Gill, G. Oleinik, U. Nauenberg, J. Yu, F. Yi

Physics WG I: Missing Energy - 31/37

2-Photon – BeamCal Study

T. Dunn, J. Gill, G. Oleinik, U. Nauenberg, J. Yu, F. Yi

Charge, Contributions

Benchmark modes for ME

Specific Models

ME from γ-Background • Very Forward Calorimetry

Collaboration • 2-Photon Background

• 2-Photon – BeamCal

2-Photon – BeamCal Study
2-Photon – BeamCal, Cuts

Summary and Outlook

Goal: measure p_T of electron from 2γ processes, prove that $p_{T,tot} = 0$, remove event because it's not BSM.

Study cuts around e in a cylinder around the electron. Find optimal trade-off between resolution (beamstrahlung mixes in, the bigger the radius) and percent of energy of electron captured (electron showers)

Cut at $\sim 20 - 25$ mm, corresponding to 10 mrad \Rightarrow at a beam energy of 250 GeV each, this corresponds to the ability to see missing $p_T > 2.5$ GeV!

2-Photon – BeamCal, Cuts

T. Dunn, J. Gill, G. Oleinik, U. Nauenberg, J. Yu, F. Yi

Charge, Contributions

Benchmark modes for ME

Specific Models

ME from γ -Background

- Very Forward Calorimetry Collaboration
- 2-Photon Background
- 2-Photon BeamCal
- 2-Photon BeamCal Study

● 2-Photon – BeamCal, Cuts

Summary and Outlook

Clustering Cuts in Depth and Energy, Example 1 Beamstrahlung +

Beamstrahlung Alone

Electron from 2-photon

Charge, Contributions

Benchmark modes for ME

Specific Models

ME from $oldsymbol{\gamma}$ -Background

Summary and Outlook

Summary

Studied several benchmark modes for missing E: γ+ ME, invisible Higgs, small mass differences (fairly model-independent) as well as specific BSM models (MSSM, nMSSM)

Charge, Contributions

Benchmark modes for ME

Specific Models

ME from γ -Background

Summary and Outlook

Summary

 Studied several benchmark modes for missing E: γ+ ME, invisible Higgs, small mass differences (fairly model-independent) as well as specific BSM models (MSSM, nMSSM)

ME very "broad" signature - need to take into account all available information: LHC, cosmology,

Charge, Contributions

Benchmark modes for ME

Specific Models

ME from γ -Background

Summary and Outlook

Summary

 Studied several benchmark modes for missing E: γ+ ME, invisible Higgs, small mass differences (fairly model-independent) as well as specific BSM models (MSSM, nMSSM)

ME very "broad" signature - need to take into account all available information: LHC, cosmology,

• One extensive study hinted that a 500 GeV machine may not be enough \Rightarrow 1 TeV. (J. Gainer et al.)

Charge, Contributions

Benchmark modes for ME

Specific Models

ME from $oldsymbol{\gamma}$ -Background

Summary and Outlook

Summary

Studied several benchmark modes for missing E: γ+ ME, invisible Higgs, small mass differences (fairly model-independent) as well as specific BSM models (MSSM, nMSSM)

ME very "broad" signature - need to take into account all available information: LHC, cosmology,

- One extensive study hinted that a 500 GeV machine may not be enough \Rightarrow 1 TeV. (J. Gainer et al.)
- Runs at different c.m. energies important for invisible Higgs mass determination (H. Logan)

Charge, Contributions

Benchmark modes for ME

Specific Models

ME from $oldsymbol{\gamma}$ -Background

Summary and Outlook

Summary

Studied several benchmark modes for missing E: γ+ ME, invisible Higgs, small mass differences (fairly model-independent) as well as specific BSM models (MSSM, nMSSM)

ME very "broad" signature - need to take into account all available information: LHC, cosmology,

- One extensive study hinted that a 500 GeV machine may not be enough \Rightarrow 1 TeV. (J. Gainer et al.)
- Runs at different c.m. energies important for invisible Higgs mass determination (H. Logan)
- Forward coverage is important: quantified in $\gamma +$ ME study of WIMPs (P. Konar et al.)

 Charge, Contributions

 Benchmark modes for ME

 Specific Models

 ME from γ -Background

Summary and Outlook

Summary

Positron polarization important: quantified in MSSM study of LSPs (J. Gainer et al.), stop mass measurement (C. Milstene et al.), chargino and neutralino mass measurements in nMSSM (C. Wagner et al.)

charge,	Contributions	

Benchmark modes for ME

Specific Models

ME from $oldsymbol{\gamma}$ -Background

Summary and Outlook

Summary

Positron polarization important: quantified in MSSM study of LSPs (J. Gainer et al.), stop mass measurement (C. Milstene et al.), chargino and neutralino mass measurements in nMSSM (C. Wagner et al.)

Threshold scans an invaluable tool: mass measurements in nMSSM (C. Wagner et al.)

Charge, Contributions

Benchmark modes for ME

Specific Models

ME from $oldsymbol{\gamma}$ -Background

Summary and Outlook

Summary

Positron polarization important: quantified in MSSM study of LSPs (J. Gainer et al.), stop mass measurement (C. Milstene et al.), chargino and neutralino mass measurements in nMSSM (C. Wagner et al.)

Threshold scans an invaluable tool: mass measurements in nMSSM (C. Wagner et al.)

c-tagging important for stop mass determination challenge for vertex detector (C. Milstene et al.)

Charge, Contributions

Benchmark modes for ME

Specific Models

ME from $oldsymbol{\gamma}$ -Background

Summary and Outlook

Summary

Positron polarization important: quantified in MSSM study of LSPs (J. Gainer et al.), stop mass measurement (C. Milstene et al.), chargino and neutralino mass measurements in nMSSM (C. Wagner et al.)

- Threshold scans an invaluable tool: mass measurements in nMSSM (C. Wagner et al.)
- c-tagging important for stop mass determination challenge for vertex detector (C. Milstene et al.)
- Knowledge of background important: BeamCal study (U. Nauenberg et al.) forward coverage

Charge, Contributions

Benchmark modes for ME

Specific Models

ME from $oldsymbol{\gamma}$ -Background

Summary and Outlook

Summary

Carola F. Berger ALCPG07 – Oct. 26th, 2007

Physics WG I: Missing Energy - 36/37

This Meeting Is Not Missing Energy!

Charge, Contributions

Benchmark modes for ME

Specific Models

ME from γ -Background

Summary and Outlook

Summary

