

Joint Damping Rings and Magnets Systems Meeting

Introduction

- Goal is to have an informal discussion of magnet issues in the DR and the transition from RDR to EDR planning
- Outline
 - RDR Overview
 - Evolving areas
 - Lattice Requirements
 - Distributed Power System
 - Kicker R&D
 - Commissioning Needs
 - Proposed EDR Coordination
 - Items requiring "special" attention during the EDR
 - Standards and standardization across areas
 - Interface requirements
 - Coordinated development of components across systems
 - Where should case studies be conducted (eg, FMEA)
 - Other

RDR Overview

Basic RDR Assumptions using OCS6 Lattice

Туре	Number	Power Method	
Dipoles (6 m)	114	6 strings, 1 per arc	
Dipoles (3 m)	12	6 strings, 1 per arc	
Quadrupoles	747	Individual	
Sextupoles	504	Individual	
Horizontal correctors	150	Individual	
Vertical correctors	150	Individual	
Skew quadrupoles	240	Individual	
Wigglers	80	Individual	
Kickers	64	Individual	
Septa	4	Individual	

Туре	$\operatorname{Max} KL$	L [m]	Max field error	# of types
Dipoles	0.0524	6;3	2×10^{-4}	2
Quadrupoles	$0.31 \ \mathrm{m}^{-1}$	0.3	2×10^{-4}	4
Sextupoles	$0.24~{\rm m}^{-2}$	0.25	2×10^{-3}	1
H correctors	0.002	0.25	5×10^{-3}	1
V correctors	0.002	0.25	5×10^{-3}	1
Skew quads	$0.03~{\rm m}^{-1}$	0.25	3×10^{-3}	1
Wigglers	_	2.5	3×10^{-3}	1

Rapidly Evolving Areas

- Lattice designs
 - OCS6 ⇒ OCS8
 - FODO alternate lattice
 - Potentially significant changes in magnet counts and adjustments to strengths
- Distributed Power System
 - Reduce cost
 - Reduce tunnel heat load
 - Requires matching of magnet specifications to bus specification
- Wiggler
 - Optimize cost and construction
 - Implement optimized physics parameters
- Kickers
 - Significant developments in pulsed power supplies with new test results imminent
 - Injection/Extraction region design
- Some Open Questions such as Commissioning Needs
 - Ex: Do we need to have bipolar supplies to support commissioning of positron ring with electrons?

Items for "Special Attention"

- What will be the mechanism within the EDR organization to set standards and to standardize designs across Area Systems?
- Interface requirements are key
 - Vacuum system ⇒ aperture requirements
 - Tunnel heat loads
 - LCW
 - etc.
- How to handle coordinated development across systems
 - Example: Redundant HA bipolar supply development needed for multiple areas
- Case studies
 - FMEA (Failure Modes and Effects Analysis)
 - Reliability

Other

- Open discussion with experts present to identify key issues that need to be incorporated into EDR WP planning
- Notes will be taken...