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Abstract
A digital control system for the superconducting cavities for a linear
accelerator is presented. The low level radio frequency system for the
FLASH project in DESY is introduced. A field programmable gate
array-based controller managed by MATLAB was developed to investigate
the novel firmware implementation. An algebraic complex domain model is
proposed for the system analysis. The calibration procedure of a signal path
is considered for multi-channel control. For a given model structure, the
input–output relation of the real plant with unknown parameters is applied.
The over-determined matrix equation is created covering a long enough
measurement range with the solution according to the least squares method.
A base function approximation by a cubic B-spline set is applied to estimate
the time-varying cavity detuning during the pulse. Control tables,
feed-forward and set point, are determined for the required cavity
performance, according to the recognized process. The feedback loop is
tuned by fitting complex gain of the corrector unit according to the
determined gain table. An adaptive control algorithm is applied for
feed-forward and feedback modes. Experimental results including field
measurement are presented for a cavity representative operation.

Keywords: superconducting cavity control, system identification, LLRF
control

1. Introduction

The TESLA technology is based on nine-cell superconducting
niobium resonators to accelerate electrons and positrons. The
acceleration structure is operated in the π -mode at a frequency
of 1.3 GHz. The RF oscillating field is synchronized with the
motion of a particle moving at the velocity of light across the
cavity (figure 1). The new low level radio frequency (LLRF)
control system is under development in order to improve
the regulation of accelerating fields in the resonators [1, 8].
One control section consists of many independent accelerating
cavities with their own dynamics driven by klystron, the servo
in the system. Fast amplitude and phase control of the cavity
field are accomplished by the modulation of a signal driving
the klystron through a vector modulator. Cavities are driven
with 1.3 ms pulses to an average accelerating gradient of
25 MV m−1. The cavity RF signal is down-converted to

an intermediate frequency of 250 kHz, while preserving the
amplitude and phase information. ADC and DAC converters
link the analogue and digital parts of the system, respectively,
with a sampling interval of 1 µs. Digital signal processing
is executed in the field programmable gate array (FPGA)
system to obtain field vector detection, calibration and filtering.
The control feedback system regulates the vector sum of the
pulsed accelerating fields in multiple cavities. The FPGA-
based controller regulates the detected real (in-phase—I) and
imaginary (quadrature—Q) components (I Q) of the incident
wave according to a given set point (S P). Adaptive feed-
forward (F F) is applied to improve the compensation of
repetitive perturbations induced by the beam loading and by
the dynamic Lorentz force detuning. The MATLAB-based
control block generates the required data for the controller.
The control algorithm employs the estimated parameters of
the cavity: coupling factor, half-bandwidth and time-varying

0957-0233/07/082328+08$30.00 © 2007 IOP Publishing Ltd Printed in the UK 2328

http://dx.doi.org/10.1088/0957-0233/18/8/006
mailto:tczarski@elka.pw.edu.pl
http://stacks.iop.org/MST/18/2328


Superconducting cavity control based on system model identification

DOWN -
CONVERTER

250 kHz 1.3 GHz 
MODULATOR ANALOGUE    SYSTEM   of   CAVITY   ENVIRONMENT

I/Q  
DETECTOR 

CONTROL  BLOCK     &     PARAMETERS     IDENTIFICATION     SYSTEM 

PARTICLE (beam)

FIELD 
SENSOR 

COUPLER 

KLYSTRON 

1.3 GHz 

CAVITY    RESONATOR   and   
ELECTRIC   FIELD distribution 

CALIBRATOR 

ADC 

F P G A SYSTEM 

CONTROLLER 

MATLAB          

I Q

Gain

Waveguide 

DAC 

S_PF_F 

Figure 1. Functional block diagram of the LLRF control system for one cavity.

detuning. This work is a continuation of previous efforts
to identify online the cavity parameters. It was proven
that the feed-forward as a direct control method may be
supplemented by the feedback operation mode, leading to
system identification [2]. A wavelet method with the Haar
function is applied to the system identification, for a pulsed
SNS linac [3]. Alternatively, a frequency shift observer is
proposed for the SNS superconducting cavity with a digital
signal processor in real time [4]. An iterative learning
control is another proposal to achieve a stable cavity field
periodically [5]. The practical difficulties, expressed in these
papers, with the on-line implementation of the parameters’
identification algorithms have inclined the author to use the
alternative approach of off-line analysis between pulses [7].
The presented method is useful for the repetitive, deterministic
process that has been verified experimentally.

A system model was developed for investigating the
efficient control method of achieving the required cavity
performance: driving in resonance during filling and field
stabilization for flat-top range. Initial testing of the real cavity
system has focused attention on the model verification and
identification of the cavity parameters. The control system
was experimentally studied without beam in the first cryo-
module with eight cavities—ACC1 at FLASH at DESY.

2. Outline of superconductive cavity modelling

The basic electromechanical features of a superconductive
cavity resonator are considered in a model including the
Lorentz force detuning and beam loading [1, 6].

The equivalent electrical representations of the chain of
nine cells of the resonator are magnetically coupled resonant
circuits. The simplified version limited to one cavity as
a single LCR circuit is quite sufficient for the purpose of
cavity control modelling. However, other pass band modes
may cause instability. The main parameters of the cavity
model correspond to the resonant LCR circuit representation
as follows: resonance frequency ≡ ω0 = 2πf0 = (LC)−1/2,
characteristic resistance (normalized shunt impedance) ≡
ρ = (L/C)1/2, load resistance (shunt impedance) ≡ R, loaded

quality factor ≡ Q = R/ρ, half-bandwidth (HWHM) ≡
2πf1/2 = ω1/2 = 1/2CR = ω0/2Q.

The cavity electrical model can be represented by the
transfer function as follows:

Z(s) = (1/R + sC + 1/sL)−1

= ω1/2 · R
/(

ω1/2 +
(
s2 + ω2

0

)/
2s

)
. (1)

Each cavity is coupled to the wave guide driven by the
klystron as a power amplifier separated by a circulator. The
forward power, which is provided by the wave guide, reflects
partly due to the mismatched input coupler and dissipates in
the circulator load. The residual transmitted power supplies
cavity and beam loading. The objective of the system is stable
acceleration of the beam with the best power efficiency.

The klystron is modelled as a RF current generator with
the resultant value 2Jg after the coupler. The beam loading can
be modelled as a current sink Jb fed by the electromagnetic
field of the cavity. The beam current with a bunched structure
has a typical charge of 8 nC, 1 MHz repetition and an average
value of 8 mA.

Therefore, the resultant cavity voltage U depends on
the generator current and the beam loading current and is
expressed in the Laplace space as follows:

U(s) = Z(s) · (2Jg(s) − Jb(s)) = Z(s) · J (s). (2)

The essential signal modelling for the superconductive
cavity resonator with its narrow bandwidth (∼400 Hz) assumes
a relatively slow modulation of the RF carrier with a frequency
fg = 1.3 GHz. Therefore, the cavity field can be modelled
in the time domain as an analytical signal, according to the
expression for the voltage case:

u(t) = a(t) · ei�(t) for �(t) = ωgt + ϕ(t), (3)

where the amplitude a(t) and the phase ϕ(t) are slowly time
varying, relative to the RF signal carrier with the frequency
ωg = 2πfg.

The low level frequency representation of the cavity signal
in the time domain is the complex envelope. It is derived by the
complex demodulation of the analytical signal for the given
frequency ωg, according to the expression, for the voltage case:

v(t) = u(t) · exp(−iωgt) = a(t) · eiϕ(t) = I + iQ, (4)
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Table 1. The main parameters of the cavity electromechanical model.

Cavity electrical parameters Cavity mechanical modes parameters

f0 = 1300 Resonance frequency (MHz) f = [235, 290, 450] Resonance frequencies vector (Hz)
ρ = 520 Characteristic resistance (�)
Q = 3 × 106 Loaded quality factor Q = [100, 100, 100] Quality factor vector
R = Q · ρ = 1560 Load resistance (M�)
f1/2 = f0/2Q = 216 Half band-width (Hz) K = [0.4, 0.3, 0.2] Lorentz force detuning constants
�f = 390 Pre-detuning (Hz) vector (Hz (MV)−2)

where I—in-phase and Q—quadrature are the real and
imaginary components of the complex envelope, respectively.

The direct relation for the complex envelope between the
cavity input i(t) ↔ I(s) and output v(t) ↔ V(s) is obtained
by the successive operations: complex modulation, cavity
transfer function and complex demodulation, according to
the simplified scheme in the Laplace space and time domain,
respectively:

I(s) ↔ i(t) ∗ exp(iωgt) ↔ I(s − iωg) ∗ Z(s) ↔ u(t)

∗ exp(−iωgt) ↔ Z(s + iωg) · I(s) = V(s) ↔ v(t).

Thus, the low-pass transformation determines the resultant
cavity transfer function Z(s + iωg), which can be effectively
simplified, under the condition that |s| � ωg ≈ ω0, as follows:

Z(s + iωg) ≈ ω1/2 · RL/(s + ω1/2 − i�ω), (5)

where the cavity detuning �ω ≡ ω0 – ωg.
Moving to the time domain yields the state space equation

with v(t) as the state phasor of the cavity electrical model:

dv(t)/dt = Ae · v(t) + ω1/2 · RL · i(t), (6)

where the phasor Ae = −ω1/2 + i�ω for the complex
representation.

The superconducting resonator has an extremely high
loaded quality factor Q ∼ 3 × 106 and a narrow bandwidth
of about 430 Hz (FWHM). Hence, the cavity is very sensitive
to the mechanical distortion caused by microphonics and the
Lorentz force, changing the resonator frequency. The cavity
model is non-stationary with the time-varying detuning �ω.
The cavity detuning value can be comparable to the cavity
bandwidth under the real operation condition. This cavity
parameter has two dominant deterministic components: the
Lorentz force detuning and the initial pre-detuning. The
mechanically biased pre-detuning attempts to compensate the
EM-forced detuning factor, during the operational condition
of the cavity.

The mechanical model of the superconductive cavity has
been created for simulation purposes. The model describes the
Lorentz force detuning, which is a function of the square of
the time-varying field gradient. It is based on the heuristic
relationship for the independent mechanical modes of the
cavity with the resonance frequency and the mechanical
quality factor for the given mode. Three dominating resonance
frequencies are considered in the model, and the superposition
of all modes and initial pre-detuning yields the resultant
detuning.

The main parameters of the cavity electromechanical
model, for simulation purposes, are combined in table 1.

The discrete model of the cavity behaviour has been
developed for digital implementation of the cavity model.

The discrete state space equations, for the parallel electrical
and mechanical processing, have been solved iteratively by
MATLAB with time interval T = 1 µs.

The simulation results for the cavity real operational
condition are presented in figure 2. The cavity is driven in
a pulsed mode forced by the control feedback supported by
feed-forward. During the first stage of operation, the cavity
fills with constant forward power, resulting in an exponential
increase of the electromagnetic field, according to its natural
behaviour under the resonance condition. When the cavity
gradient has reached the required final value, the beam loading
current is injected, resulting in a steady-state flat-top operation.
Turning off the generator and the beam current, at the end of
the RF pulse, yields an exponential decay of the cavity field.

3. Cavity control system modelling

3.1. Multi-channel system modelling

A discrete-time model in the complex domain is introduced to
analyse the LLRF digital control system (figure 3). A signal is
modelled by a complex envelope called a ‘phasor’. Modules
of the system form a phasor according to their characteristics
described by complex factors. In a practical application
of a linear accelerator, one klystron drives many cavities.
Therefore, a multi-channel system, driven with a common
klystron phasor u, for vector sum control is considered.

The initial considerations are for a single cavity without
a beam. The electrical model of the single cavity is assumed
as the only dynamic part of the ith channel. The discrete
model is based on a difference equation of first order for the
output phasor vi, driven with the input phasor u. The recursive
equation of the cavity model, with the sampling interval T, is
expressed by a complex form, for step k:

vi
k+1 = Ei

k · vi
k + Ai · uk, (7)

where the input coupling is described by Ai and the system
dynamics (time varying) are described by Ei

k = (
1−T ωi

1/2

)
+

T �ωi
k · i, with the ith cavity parameters: constant half-

bandwidth = ωi
1/2 and time-varying detuning = �ωi

k .

The input coupling factors Ai are responsible for power
distribution and phase alignment of the cavities. The static
but nonlinear klystron unit (common for all cavities) is
modelled by the time varying factor Dk. The static and linear
measurement channel, as an output unit, is represented by
the constant factor Bi for the ith channel. A calibration of
the measurement path is essential for cavity control, and is
required in a multi-channel case. A calibration of a single
channel is accomplished by means of a calibrator unit Ci
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Figure 2. The MATLAB results of simulation for the cavity real operation condition.

implemented inside the FPGA controller area, so Bi · Ci =
c ≈ const. Scaling of each channel is performed according to
the cavity field gradient taken from an outside measurement
system. After phasing of each channel, an average flat-
top phase is equal to the given value matched to the beam.
However, the current consideration is without a beam.

Consequently, a vector sum for all channels is considered.
Summarizing equation (7) for all channels and introducing new
variables yields, for a step k:

vk+1 = Ek · vk + F · uk, (8)

where the vector sum is vk = ∑
i

(
vi

k

)
, the resultant input factor

is F = ∑
i (A

i ) and equation Ek · vk = ∑
i

(
Ei

k · vi
k

)
defines a

weighted average system factor Ek = (1 − T ω1/2) + T �ωk ·
i, with the resultant half-bandwidth = ω1/2 and resultant
detuning = �ωk.

The resulting, multi-cavity model, introduced by
equation (8), has the same structure as a single channel
model (7), but with new parameters, in the case of diverse
operational condition for cavities.

Including the klystron unit in the cavity system, the
ultimate model, driven with the controller phasor xk , is given

by

vk+1 = Ek · vk + Hk · xk, (9)

with the input coupling complex factor Hk = F · Dk .

3.2. Controller modelling

The FPGA-based controller executes the procedure of
feed-forward driving supported by feedback according to
prearranged control tables: FFk, SPk, Gk. A multi-cavity
phasor c · vk is compared to the reference phasor SPk (set
point) creating an error phasor. The error phasor is multiplied
by the complex gain Gk of the corrector unit, producing a
feedback phasor. Superposition of a feedback phasor and
a compensating phasor FFk (feed-forward) results in the
controller phasor xk. Consequently, the controller model is
expressed, for step k:

xk+1 = FFk + Gk · (SPk − c · vk). (10)

Control tables are determined for the required cavity
performance, according to the control algorithm based on
estimated parameters of the cavity system.
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4. Parameter identification of the cavity system

The control algorithm is based on the cavity system model and
requires therefore the identification of the process parameters
[3]. The two complex time varying factors Ek and Hk,
respectively, should be recognized in equation (9). The least
square (LS) method is proposed for parameter estimation under
a noisy and non-stationary condition [7].

The first stage of the estimation procedure is based on the
linear part of the model expressed by equation (8), where the
factor F has a constant scalar value F after proper calibration.
The complex equation (8) is expanded to a scalar form,
applying the real (vr, ur) and imaginary (vi, ui) components
of the cavity and klystron phasor respectively, for steps k and
k+1, as follows:

(vr )k+1 = (1 − T ω1/2) · (vr )k − T �ωk · (vi )k + F · (ur )k

(11)

(vi )k+1 = (1 − T ω1/2) · (vi )k + T �ωk · (vr )k + F · (ui )k.

(12)

Three scalar unknowns include two stable parameters:
the half-bandwidth ω1/2 and factor F, and the time varying
detuning �ωk. These parameters should be estimated for each
kth step of the process, described by two equations (11) and
(12) involving measured input and output data, respectively.
The time-varying detuning �ωk can be approximated for each
kth step by L-order series of chosen base functions {fj } with
unknown, but constant coefficients αj , as follows:

T �ωk =
L∑

j=1

αjfj (k) = fk · α, (13)

where α is the column vector of L coefficients, fk is the
row vector of L values of base functions for the kth step.

CAVITY 
SYSTEM 

CONTROLLER 

CONTROL DATA 
determination 

PARAMETERS 
identification 

MATLAB       SYSTEM

CONTROL TABLES 

FPGA  SYSTEM 

DAQ  MEMORY 

DATA  MATRIX 

Figure 4. Adaptive control process for the cavity system driving.

Substituting equation (13) into (11) and (12), all
unknowns are extracted as follows:

vk+1 = wk · z, (14)

where z = [(1 − T ω1/2), α, F ] is the resultant column vector
of unknown L + 2 values,

vk = [(vr )k, (vi )k], wk = [vk, v′
k · fk, uk]

for

v′
k = [−(vi )k, (vr )k] and uk = [(ur )k, (ui )k].

In a practical application, equation (14) is considered for N
steps of an approximation range, creating 2N over-determined
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amplitude relative accuracy = 4.7 × 10−4, phase accuracy = 8.2 × 10−4 rad (standard deviation).

equations (2N � L+2), expressed by the matrix form, as
follows:

V = W · z, (15)

where V is the total output vector (dim = 2N × 1) and W is
the total matrix of the model structure (dim = 2N × L + 2).

Multiplying the two sides of equation (15) by matrix
transposition WT , the solution for the vector z is given by

z = (WT · W)−1 · WT · V. (16)

It is the unique solution, according to the LS method
for the measured data of vector V and structure matrix W.
An algorithm for the identification of cavity parameters was
implemented in the Matlab system applying the cubic B-spline
set of functions for the linear decomposition of the time-
varying detuning [7].

The second stage of the estimation procedure is based
on the nonlinear part of the model described by the complex
equation uk = Dk · xk for the klystron unit (figure 3). Finally,
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Table 2. The estimated formulas for the control tables.

Table

Range Feed-forward Set-point Gain

Filling FFk = T ω1/2 · v · exp(iϕk+1)/Hk+1

ϕk+1 = ϕk + T�ωk
SPk = v · [1 − exp(−k · T ω1/2)] · exp(iϕk)

Gk = L · T ω1/2/Hk+1

L = const.
Flat-top FFk = V · T (ω1/2 − �ωk+1 · i)/Hk+1 SPk = V = V · exp(i	) Gk = (L + 1) · T (ω1/2 − �ωk+1 · i)/Hk+1

the factor Hk from equation (9) is estimated, as follows: Hk =
F · uk/xk. The prior estimation (filtering), applying the cubic
B-spline set of functions, for measured data cavity, controller
and klystron phasor, was performed for off-line identification
of the parameters presented in this paper.

5. Control of the cavity system

5.1. Feed-forward and feedback driving

The required cavity performance is driving in resonance during
filling and field stabilization for the flat-top range. The cavity
is driven in feed-forward and feedback modes to fulfil a desired
operation condition. Combining equations (9) and (10) yields
a resulting equation for the cavity control system, as follows:

vk+1 = Ek · vk + Hk · [FFk−1 + Gk−1 · (SPk−1 − c · vk−1)].

(17)

The required control tables, feed-forward—FFk, set
point—SPk and complex gain—Gk, should be determined for
the given cavity system factors: Ek and Hk. The required cavity

phasor vk can be achieved by ideal feed-forward compensation
according to the recognized system model. However, the
feedback mode compensates stochastic disturbances and a
model discrepancy.

Let us consider equation (17), separately for the two
modes of operation, reduced as

vk+1 = Ek · vk + Uk, (18)

where Uk = Hk · FFk−1 represents the feed-forward and
Uk = Hk · Gk−1 · (SPk−1 − c · vk−1) represents the feedback.

The solution of equation (18) gives the estimated formulae
presented in table 2, for two modes of operation, within two
ranges.

• Filling range
Equation (18) is driven with the phasor Uk with a constant
amplitude and modulated phase ϕk , so the RF signal tracks
the time-varying resonance frequency of the cavity. In
response, the cavity phasor vk has the same phase and
exponential growth of amplitude, according to natural
behaviour, under the resonance condition. The initial
phase ϕ1 and asymptotic amplitude v are determined to
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fulfil the condition for a final filling phasor vk, which is
equal to the required flat-top phasor V.

• Flat-top range
• Equation (18) is driven with the phasor Uk compensating

the step varying factor Ek, so the cavity phasor vk = V
is stabilized. The complex gain Gk and factor c are
determined for the given loop gain L assumed as a constant
scalar parameter for the steady-state cavity phasor
c · V = L · (SPk − c · V). The loop gain L value is
limited due to the stability condition.

5.2. Adaptive control process

Superconducting cavity control is carried out according to
the scheme of figure 4. Control data, generated by the
Matlab system, are loaded into the internal FPGA memory
and actuate the controller. The input and output data of the
cavity are acquired to another area of the memory during pulse
operation. The acquired data are conveyed to the Matlab
system, for parameter identification processing, between
pulses. Estimated cavity parameters are considered as actual
values for the required cavity performance and are applied to
create the control tables for the next pulse. But new control
tables modify the trajectory of the nonlinear process and
again new parameters are estimated. This iterative processing
quickly converges to the desired state of the cavity, assuming
deterministic conditions for successive pulses. Stochastic
fluctuations of the required trajectory are reduced by the
averaging processing (filtering) for successive pulses.

The experimental results of the adaptive control, under
real operation conditions, are presented in figures 5 and 6 for
feed-forward and feedback driving. The cavity is activated
with a pulse of 1.2 ms duration and repetition of 10 Hz.
During the first stage of the operation (∼0.5 ms), the cavity is
filling with constant forward power resulting in an exponential
increase of the field under the resonance condition. When
the cavity phasor has reached the required final value, the
steady state is forced during the flat-top range (∼0.7 ms).
The initial pre-detuning attempts to compensate the Lorentz
force detuning and balances the required power consumption
during pulse operation of the cavity. Switching off the klystron
power yields an exponential decay of the cavity field. For a
comparison to the presently working controller, figure 7 shows
data taken from the measurement and control system DOOCS
at DESY.

6. Conclusions

The cavity control system for the superconducting linear
accelerator project is introduced in this paper. Digital control
of the superconductive cavity has been performed by applying
the FPGA technology system in DESY. These experiments

focused attention on the general recognition of the cavity
characteristics and projected control methods. Calibration and
correction of the signal path are considered for the efficient
driving of a cavity. Identification of the resonator parameters
has been proven to be a successful approach in achieving the
required performance, i.e. driving on resonance during filling
and field stabilization during flat-top time, while requiring
reasonable levels of power consumption. Feed-forward
and feedback modes were successfully applied in operating
the cavity. Representative results of the experiments are
presented for the typical operational condition. Preliminary
application tests of the FPGA controller have been carried
out using the superconducting cavities in the ACC1 module
of the FLASH laser setup at DESY. The proposed control
algorithm is still under development, and it is too early for an
ultimate assessment and comparison. The achieved amplitude
stabilization is comparable to the present controller, but phase
stabilization is much better (figures 6 and 7).
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