# Higgs decays to invisible modes at the LHC and ILC

Heather Logan Carleton University

ALCPG'07

Fermilab

October 2007

#### Outline

Motivation

Invisible Higgs at the LHC Interlude: Invisible Higgs at the Tevatron?

Invisible Higgs at the ILC

Comparison Future directions

#### Motivation

SM Higgs is very narrow for  $m_H \lesssim 160$  GeV.

Any new decay mode with reasonable partial width can easily become the dominant BR.

If there is a neutral (quasi)stable particle with mass  $< m_H/2$   $\Box^{\Xi}$ and EW-strength coupling to H, then  $H \rightarrow$  invisible can be the dominant decay.

- $H \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0$  in MSSM, NMSSM
- $H \rightarrow SS$ , scalar dark matter
- $H \rightarrow KK$  neutrinos in EDim
- $H \rightarrow$  Majorons
- etc.





Heather Logan

Higgs decays to invisible modes at the LHC and ILC

10

ALCPG'07

Invisible Higgs at LHC

VBF  $\rightarrow$   $H_{inv}$  [Eboli & Zeppenfeld (2000); Neukermans & Di Girolamo (2003)] Signal is  $jj \not p_T$ ; jets are hard and forward

 $Z + H_{inv}$  [Frederiksen, Johnson, Kane & Reid (1994); Choudhury & Roy (1994); Godbole, Guchait, Mazumdar, Moretti & Roy (2003); Davoudiasl, Han & H.L. (2004); Meisel, Dührssen, Heldmann & Jakobs (2006)] Signal is  $\ell^+\ell^- \not p_T$ , with  $m(\ell^+\ell^-) = m_Z$  ( $\ell = e, \mu$ )

 $t\overline{t}H_{inv}$  [Gunion (1994); Kersevan, Malawski & Richter-Was (2002)] Signal is  $bjj + b\ell + p_T$ .

 $W + H_{inv}$  [Choudhury & Roy (1994); Godbole, Guchait, Mazumdar, Moretti & Roy (2003)] Signal is  $\ell p_T$ ; totally swamped by background. Heather Logan Higgs decays to invisible modes at the LHC and ILC









ALCPG'07

#### 95% CL exclusion limits with 30 fb<sup>-1</sup> at LHC



[Plot from ATL-PHYS-PUB-2006-009]

Heather Logan Higgs decays to invisible modes at the LHC and ILC ALCPG'07

Naive extrapolation from the ATLAS plot for 30 (300)  $fb^{-1}$ :

### Value of $\xi^2$ excluded at 95% CL:

|                              | $m_H = 120 \text{ GeV}$ | 140 GeV     | 160 GeV     |
|------------------------------|-------------------------|-------------|-------------|
| $VBF \rightarrow H_{inv}$    | 0.25 (0.08)             | 0.25 (0.08) | 0.25 (0.08) |
| $Z + H_{inv}$                | 0.45 (0.15)             | 0.6 (0.2)   | 0.8 (0.25)  |
| $t\overline{t}H_{	ext{inv}}$ | 0.55 (0.17)             | 0.75 (0.25) | 0.95 (0.3)  |

 $1\sigma$  uncertainty on  $\sigma \times BR(inv)$  for  $\xi^2 = 1$ :

|                           | $m_H = 120 \text{ GeV}$ | 140 GeV   | 160 GeV   |
|---------------------------|-------------------------|-----------|-----------|
| $VBF \rightarrow H_{inv}$ | 13% (4%)                | 13% (4%)  | 13% (4%)  |
| $Z + H_{inv}$             | 23% (7%)                | 30% (10%) | 40% (13%) |
| $t\overline{t}H_{inv}$    | 28% (9%)                | 38% (12%) | 48% (15%) |

Value of  $\xi^2$  required for  $5\sigma$  discovery:

|                           | $m_H = 120 \text{ GeV}$ | 140 GeV    | 160 GeV    |
|---------------------------|-------------------------|------------|------------|
| $VBF \rightarrow H_{inv}$ | 0.63 (0.2)              | 0.63 (0.2) | 0.63 (0.2) |
| $Z + H_{inv}$             | 1.1 (0.36)              | 1.5 (0.47) | 2.0 (0.63) |
| $_{}t\overline{t}H_{inv}$ | 1.4 (0.43)              | 1.9 (0.59) | 2.4 (0.75) |

Caveat: 300 fb<sup>-1</sup> numbers just scaled by  $\mathcal{L}^{-1/2}$ . Systematics, background normalization from data don't scale this way!

#### Higgs mass measurement from $H \rightarrow$ invisible

Mass of  $H_{inv}$  is accessible only through production process.



Signal rate depends on  $m_H$ . Will use VBF and  $Z + H_{inv}$ . First pass: assume  $\xi^2 = 1$ .

Heather Logan Higgs decays to invisible modes at the LHC and ILC ALCPG'07

Higgs mass determination from  $Z + H_{inv}$ , with 10 (100) fb<sup>-1</sup>:

|                                     |            | •          | <u>,                                     </u> |
|-------------------------------------|------------|------------|-----------------------------------------------|
| $m_h$ (GeV)                         | 120        | 140        | 160                                           |
| $(d\sigma_S/dm_h)/\sigma_S$ (1/GeV) | -0.013     | -0.015     | -0.017                                        |
| Statistical uncert.                 | 21% (6.6%) | 28% (8.8%) | 37% (12%)                                     |
| Background normalization uncert.    | 33% (10%)  | 45% (14%)  | 60% (19%)                                     |
| Total uncert.                       | 40% (16%)  | 53% (19%)  | 71% (24%)                                     |
| $\Delta m_h \; ({ m GeV})$          | 30 (12)    | 35 (12)    | 41 (14)                                       |

Davoudiasl, Han & H.L. (2004)

 $Z + H_{inv}$ :  $\Delta m_H = 30/35/41 (12/12/14)$  GeV with 10(100) fb<sup>-1</sup>

Higgs mass determination from VBF $\rightarrow$   $H_{inv}$ , with 10 (100) fb<sup>-1</sup>:

|                                            |             |             |             | × ,         |
|--------------------------------------------|-------------|-------------|-------------|-------------|
| $m_h$ (GeV)                                | 120         | 130         | 150         | 200         |
| $(d\sigma_S/dm_h)/\sigma_S$ (GeV $^{-1}$ ) | -0.0026     | -0.0026     | -0.0028     | -0.0029     |
| Statistical uncert.                        | 5.3% (1.7%) | 5.4% (1.7%) | 5.7% (1.8%) | 6.4% (2.0%) |
| Background norm.                           | 5.2% (2.1%) | 5.3% (2.1%) | 5.6% (2.2%) | 6.5% (2.6%) |
| Total uncert.                              | 11% (8.6%)  | 11% (8.6%)  | 11% (8.6%)  | 12% (8.8%)  |
| $\Delta m_h$ (GeV)                         | 42 (32)     | 42 (33)     | 41 (31)     | 42 (30)     |

Davoudiasl, Han & H.L. (2004)

VBF:  $\Delta m_H \simeq 42$  (32) GeV with 10 (100) fb<sup>-1</sup>

 $Z + H_{inv}$  cross section falls faster with  $m_H$  than VBF: more  $m_H$  dependence but less statistics.

All numbers used here are from theorist parton-level MC studies.

Getting  $m_H$  from one cross section relies on assumption  $\xi^2 = 1$ .

Second pass: use ratio of  $Z + H_{inv}$  and VBF rates.

 $Z+H_{inv} \sim HZZ$  coupling; VBF  $\sim HWW$ , HZZ couplings: related by custodial SU(2) in models with only Higgs doublets/singlets.



Example: MSSM or 2HDM  $ZZH \text{ coup} = (gm_Z/\cos\theta_W)\sin(\beta - \alpha)$   $WWH \text{ coup} = gm_W\sin(\beta - \alpha)$ 

Higgs mass determination from ratio method with 10 (100)  $fb^{-1}$ :

| $m_h$ (GeV)                      | 120       | 140       | 160       |
|----------------------------------|-----------|-----------|-----------|
| $r = \sigma_S(Zh)/\sigma_S(WBF)$ | 0.132     | 0.102     | 0.0807    |
| $(dr/dm_h)/r~(1/{ m GeV})$       | -0.011    | -0.013    | -0.013    |
| Total uncert., $\Delta r/r$      | 41% (16%) | 54% (20%) | 72% (25%) |
| $\Delta m_h$ (GeV)               | 36 (14)   | 43 (16)   | 53 (18)   |

Davoudiasl, Han & H.L. (2004)

Ratio method:

 $\Delta m_H = 36/43/53 \ (14/16/18) \ \text{GeV}$  with 10 (100) fb<sup>-1</sup>

Assumed  $\xi^2 = 1$  for signal statistics.

Heather Logan Higgs decays to invisible modes at the LHC and ILC ALCPG'07

| Summary of $m_H$ extraction $1\sigma$ uncertainty with 100 fb <sup>-1</sup> |                         |         |         |  |  |
|-----------------------------------------------------------------------------|-------------------------|---------|---------|--|--|
|                                                                             | $m_H = 120 \text{ GeV}$ | 140 GeV | 160 GeV |  |  |
| $Z + H_{inv}, \ \xi^2 = 1$                                                  | 12 GeV                  | 12 GeV  | 14 GeV  |  |  |
| VBF, $\xi^2 = 1$                                                            | 32 GeV                  | 32 GeV  | 31 GeV  |  |  |
| Ratio method                                                                | 14 GeV                  | 16 GeV  | 18 GeV  |  |  |

## Summary of $m_{\tau\tau}$ extraction $1\sigma$ uncertainty with 100 fb<sup>-1</sup>.

#### Comments:

- All numbers used come from theorist parton-level MC studies.

- VBF numbers are from Eboli & Zeppenfeld and include a central jet veto – this degrades at higher luminosity LHC running.

- Precisions do not scale with  $\mathcal{L}^{-1/2}$  because of systematics and background normalization from data.

- With  $Z + H_{inv}$ , VBF, and  $t\bar{t}H_{inv}$  channels, together with assumption of Higgs doublets/singlets only, we should be able to simultaneously fit for  $m_H$ ,  $\xi_V$ , and  $g_{Htt}^2/g_{HVV}^2$ .

Higgs decays to invisible modes at the LHC and ILC Heather Logan ALCPG'07 Interlude: Invisible Higgs at the Tevatron?

Pheno studies for  $m_H = 120$  GeV:

 $Z + H_{inv}$  [Martin & Wells, hep-ph/9903259] 1.9 $\sigma$  with 10 fb<sup>-1</sup>  $3\sigma$  requires 12 fb<sup>-1</sup> × 2 detectors

$$\begin{split} \mathsf{VBF} &\to H_{\mathsf{inv}} \text{ [Davoudias], Han, & H.L., hep-ph/0412269]} \\ & 1.6\sigma \text{ with 10 fb}^{-1} \\ & 3\sigma \text{ requires 18 fb}^{-1} \times 2 \text{ detectors} \\ & \mathsf{No central jet veto used: room for improvement.} \end{split}$$



 $m_H = 120$  GeV: above LEP limit. Could extend LEP exclusion before LHC data is analyzed.

No central jet veto used: room for improvement.

LHC: central jet veto improves S/B by factor of 3 [Rainwater, hep-ph/9908378; Eboli & Zeppenfeld, hep-ph/0009158] If central jet veto works this well for Tevatron, can get  $3\sigma$  in VBF channel alone with 6 fb<sup>-1</sup> × 2 detectors.

Heather Logan Higgs decays to invisible modes at the LHC and ILC ALCPG'07

#### Invisible Higgs at ILC

Relevant production modes:



 $e^+e^- \rightarrow \nu \bar{\nu} H$  – invisible for  $H_{\rm inv}$ 

 $e^+e^- \rightarrow t\bar{t}H$  – cross section too small at 500 GeV

Use recoil mass technique to find (missing) mass bump.



[TESLA TDR]  $m_H = 120$  GeV,  $\sqrt{s} = 350$  GeV,  $\int \mathcal{L} = 500$  fb<sup>-1</sup>,  $\mu\mu$  only

Measure  $m_H$  and  $e^+e^- \rightarrow ZH$  total cross section.

Study: search for  $e^+e^- \rightarrow ZH_{inv}$  with  $Z \rightarrow q\bar{q}$ . [M. Schumacher, LC-PHSM-2003-096]

First discover H and measure mass (via recoil mass?) Measure total  $e^+e^- \rightarrow ZH$  cross section from recoil technique.

Then look at  $e^+e^- \rightarrow ZH_{inv}$  with  $Z \rightarrow q\bar{q}$ .

- Force event to 2 jets
- Cuts on E<sub>vis</sub>,  $p_T^{\rm tot}$ ,  $\cos \theta_{\rm dijet}$
- Require jj reconstruct Z mass:  $|M_{vis} M_Z| < 7.5$  GeV
- Require missing mass near H mass:  $|M_{miss} M_H| < 15 \text{ GeV}$

Discovery reach:

500 fb<sup>-1</sup> at 
$$\sqrt{s}$$
 = 350 GeV



 $5\sigma$  discovery for BR<sub>inv</sub> down to ~ 2.5% for  $m_H = 120$  GeV ~ 1.5% for  $m_H = 140$ , 160 GeV

Heather Logan Higgs decays to invisible modes at the LHC and ILC ALCPG'07

Measurement precision:

500 fb $^{-1}$  at  $\sqrt{s} = 350$  GeV



Precision on large BR(inv) limited by uncertainty on  $\sigma(ZH)$  measurement.

Measurement precision:

500 fb $^{-1}$  at  $\sqrt{s} = 350$  GeV



Indirect method:

Look in recoil mass peak, count up visible final states. BR(inv) is what is left over. Better for BR(inv)  $\gtrsim 0.7$ .

Study:  $e^+e^- \rightarrow ZH$  near threshold

[Richard & Bambade, hep-ph/0703173]

15

10

5

Motivation:

1) Cross section is larger near thresh-

Falls like  $1/(s-m_Z^2)^2$  well above threshold due to Z propagator.

2) Better energy/momentum resolution for less-boosted visible particles: sharper Higgs recoil mass peak.

Luminosity to reach 30 MeV precision on Higgs mass for  $m_H = 120$  GeV  $\sigma(H\mu\mu)$  Single event  $m_H$   $\mathcal{L}$  for 30 MeV

| $E_{CM}$                          | (no ISR) | resolution | $(\mu\mu + ee)$      |  |
|-----------------------------------|----------|------------|----------------------|--|
| 350 GeV                           | 4.6 fb   | 900 MeV    | 780 fb <sup>-1</sup> |  |
| 230 GeV                           | 9.1 fb   | 200 MeV    | 20 fb <sup>-1</sup>  |  |
| Richard & Rambade hep-ph/0703173] |          |            |                      |  |

Dambaue, nep-ph/



 $e^+e^- \rightarrow ZH_{inv}$  with  $Z \rightarrow q\bar{q}$ : running near threshold

Higher cross section and less background under Higgs recoil peak. Much less lumi needed for comparable precision.

For  $m_H = 120$  GeV:

|          | $\sigma(HZ_{\sf had})$ | $\Delta M_H$ | $Z_{\sf had} Z_{\sf inv} \gamma \ {\sf BG}$ | $\int \mathcal{L}$ for 95% excl | ∫ £ for                    |
|----------|------------------------|--------------|---------------------------------------------|---------------------------------|----------------------------|
| $E_{CM}$ | (34% eff)              | (hadronic)   | in $\pm 2\Delta m_H$                        | of $BR_{inv} > 2\%$             | $BR_{inv} = (2 \pm 0.5)\%$ |
| 350 GeV  | 30 fb                  | 7.3 GeV      | 10 fb                                       | 85 fb <sup>-1</sup>             | 500 fb <sup>-1</sup>       |
| 230 GeV  | 60 fb                  | 2.3 GeV      | 4 fb                                        | $8 \ { m fb}^{-1}$              | $50 \mathrm{~fb^{-1}}$     |
|          |                        |              |                                             | [Dishard Q. Davahada            | han nh (0702172]           |

[Richard & Bambade, hep-ph/0703173]

Better recoil mass resolution: direct access to Higgs width (!) fb/GeV 1 SM Higgs recoil spectrum, 0.8  $m_H = 175 \text{ GeV}$  and  $\sqrt{s} = 290 \text{ GeV}$ . 0.6 Plotted without and with  $\Gamma_H = 500$  MeV 0.4 Breit-Wigner. 0.2 174 174.5 175 175.5 176 176.5 177 [Richard & Bambade, hep-ph/0703173] Mh GeV

#### Invisibly-decaying Higgs:

BR(fermions) remains measurable down to fraction of a %. Visible BR(fermions) allows ratio of partial widths between SM mode and invisible.

No BR(fermions) means  $\Gamma_{tot}$  larger by 2 orders of magnitude. Total width becomes measurable for  $m_H = 120$  GeV!

Comparison of ILC to LHC

#### Higgs mass:

LHC indirect from ratio of rates.  $\Delta M_H \sim 14-18$  GeV; relies on SU(2) doublets/singlets assumption.

ILC direct from recoil spectrum.  $\Delta M_H \sim$  30 MeV; model independent.

#### BR(inv) discovery reach:

LHC from VBF. 5 $\sigma$  reach for  $\xi^2 \gtrsim 0.65$  with 30 fb<sup>-1</sup>; better for 300 fb<sup>-1</sup>. Maybe 0.2?

ILC from  $Z(\rightarrow qq)H_{inv}$ . 5 $\sigma$  reach for  $\xi^2 \gtrsim 0.02$ .

#### BR(inv) measurement precision:

LHC from VBF. 13% assuming cross section = SM with 30 fb<sup>-1</sup>; better for 300 fb<sup>-1</sup>. Maybe 4%?

ILC from indirect method. 2%, model independent.

#### Future directions

Existing ILC studies are for  $\sqrt{s} = 350$  GeV and  $\sqrt{s} = 230$  GeV. But if we start with 500 GeV, we won't turn it down for a while!

Should quantify how well can be done at  $\sqrt{s} = 500$  GeV.

- Start with  $e^+e^- \rightarrow ZH_{inv}$  with  $Z \rightarrow ee, \mu\mu$ .
- Reconstruct recoil spectrum.



- Add  $Z \rightarrow q\bar{q}$  later for statistics: mass resolution is worse. - At higher  $\sqrt{s}$ , add  $t\bar{t}H_{inv}$  for access to top Yukawa.

#### Backup slides

Uncertainties for LHC  $H_{inv}$  mass extraction:

Statistical uncertainty on signal rate:  $\Delta \sigma_S / \sigma_S = \sqrt{S+B}/S$ 

Background normalization uncertainty: Backgrounds for  $Z + H_{inv}$  and VBF are dominated by  $Z \rightarrow \nu\nu$ . Can *measure* background rates/shapes in  $Z \rightarrow \ell\ell$  channel! Less statistics:  $BR(Z \rightarrow \ell\ell)/BR(Z \rightarrow \nu\nu) \simeq 0.28$ .  $\Delta \sigma_S / \sigma_S = \sqrt{B \times BR(\ell\ell)/BR(\nu\nu)/S}$ 

Theory uncertainty: QCD + PDFs 4% for VBF, 7% for  $Z + h_{inv}$ 

Uncertainty on experimental efficiencies: 5% for VBF forward-jet tag / central-jet veto 4% dilepton tagging (2% per lepton)

```
Luminosity normalization: 5%
```