

ILC Cryogenic Systems Status and EDR Plans

Tom Peterson 25 October 2007

ILC Cryogenics -- outline

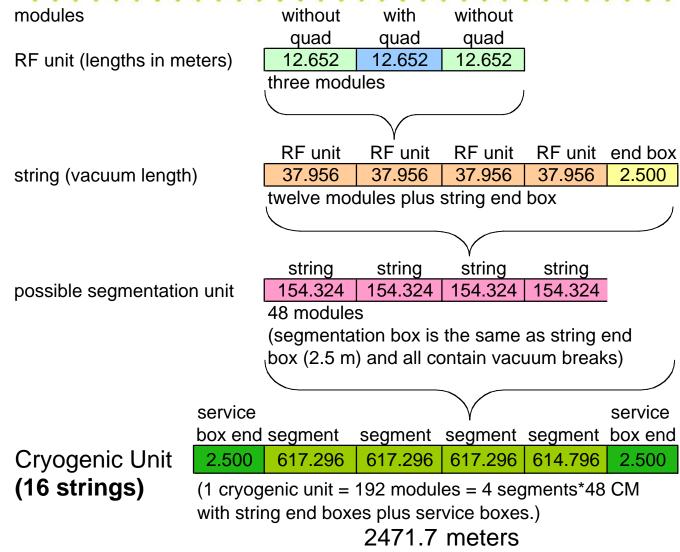
- A few slides to review cryogenic systems concept and status
- KOM notes
 - Cryomodules/Cryogenics Kickoff Meeting was held at KEK, 12 - 14 Sep 2007
 - http://ilcagenda.linearcollider.org/conferenceDisplay.py ?confld=1854
- System and interface design parameters
 - A start at creating a concise set of system and interface requirements/parameters in one table
- Work package summary
- Notes from discussions this week

Acknowledgements

- Primary RDR cryogenic system co-authors
 - Arkadiy Klebaner, Jay Theilacker (Fermilab)
 - Vittorio Parma, Laurent Tavian (CERN)
- TESLA collaboration
 - Especially DESY and INFN
- Recently for parameters list and work package planning
 - Arkadiy Klebaner and Jay Theilacker

ILC cryogenic system definition

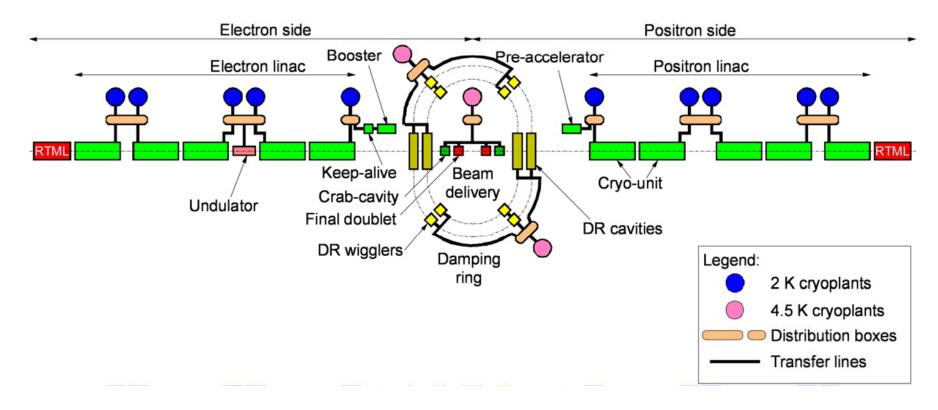
- The cryogenic system is taken to include cryogen distribution as well as production
 - Cryogenic plants and compressors
 - Including evaporative cooling towers
 - Distribution and interface boxes
 - Including non-magnetic, non-RF cold tunnel components
 - Transfer lines
 - Cryo instrumentation and cryo plant controls
- Cryogenic system design is closely integrated with cryogenic SRF module and magnet design
- R&D systems and production test systems will also include significant cryogenics



Cryogenic system design status

- Fairly complete accounting of cold devices with heat load estimates and locations
 - Focus has been on main linac cryomodules
 - Some other cold devices still not well defined
 - Some heat loads are very rough estimates
- Cryogenic plant capacities have been estimated
 - Overall margin about 1.54
 - Main linac plants dominate, each at 20 kW @ 4.5 K equivalent total capacity
- Component conceptual designs (distribution boxes, end boxes, transfer lines) are still sketchy
 - Need these to define space requirements and make cost estimates
 - Used area system lattice designs to develop transfer line lengths and conceptual cryosystem layouts

Main Linac Cryogenic Unit



Cryogenic unit length limitations

- 25 KW total equivalent 4.5 K capacity
 - Heat exchanger sizes
 - Over-the-road sizes
 - Experience
- Cryomodule piping pressure drops with 2+ km distances
- Cold compressor capacities
- With 192 modules, we reach our plant size limits, cold compressor limits, and pressure drop limits
- 192 modules results in 2.47 km long cryogenic unit
- 5 units (not all same length) per 250 GeV linac
 - Divides linac nicely for undulators at 150 GeV

Cryogenic plant arrangement

10 large, 2 Kelvin cryogenic plants 3 or more, smaller, mostly 4.5 Kelvin cryogenic plants Significant distribution systems

Major cryogenic distribution components

- 6 large (2 K system) tunnel service or "distribution" boxes
 - Connect refrigerators to tunnel components and allow for sharing load between paired refrigerators
- 20 large (2 K) tunnel cryogenic unit "feed" boxes
 - Terminate and/or cross-connect the 10 cryogenic units
- ~132 large (2 K) string "connecting" or string "end" boxes of several types
 - Contain valves, heaters, liquid collection vessels, instrumentation, vacuum breaks
 - Note that these have many features of modules!
- ~3 km of large transfer lines (including 2 Kelvin lines)
- ~100 "U-tubes" (removable transfer lines)
- Damping rings are two 4.5 K systems
 - Various distribution boxes and ~7 km of small transfer lines
- BDS and sources include transfer lines to isolated components
- Various special end boxes for isolated SC devices

KOM notes -- September 2007

- Reviewed RDR cryogenic system status
- Discussed LHC cryogenic system experience
 - See very informative talks by Vittorio Parma and Laurent Tavian (CERN) about LHC cryostats and cryogenics, linked to the KEK meeting website
- Reviewed work package table
- Discussed focus and objectives of EDR phase

Two key points from KOM

- We need a unified parameters table for the cryogenic system
 - Performance parameters, functional requirements, and interface parameters are in various spreadsheets
 - Not all of this information is in the RDR
 - Will serve as a guide and a reference for EDR
 - Becomes the basis for functional and interface specification documents
- We want to retain the flexibility of a "plug compatibility" strategy in order to retain parallel lines of cryomodule and cryogenic component development work
 - Parameters table will help define interfaces

Parameters table (a start)

Cryogenic system parameters and cryomodule thermal parameters

Cryomodule

			Pressure			remperature	
		Nominal Range			Nominal Range		
	Line	MAWP	Minimum	Maximum	Tolerance/Stability	Minimum	Maximum
		Pa	Pa	Pa		K	K
1.3 GHz RF cavity helium circuit	B, G	200,000	2,700	3,600		1.95	2.05
Subcooled helium supply	Α	2,200,000	130,000			2.20	
Cold thermal intercept/shield	C, D	2,200,000	500,000	550,000		5.00	8.00
Warmer thermal intercept/shield	E, F	2,200,000	1,800,000	2,000,000		40.00	80.00
Warmup/Cooldown	Н	200,000				2.20	300.00

Cryogenic Plant

	Min. Plant	Plant Overcapacity		
	% Carnot	Static	Dynamic	Factor
Nominal cryoplant efficiency				
2 K level	22%	1.10	1.10	1.40
5 - 8 K level	24%	1.10	1.10	1.40
40 - 80 K level	28%	1.10	1.10	1.40

Could include much more and will add more, but want to restrict table to primary parameters

Cryo System Work Packages

- Work packages are derived largely from a work list drafted during the RDR
- Precise EDR scope not yet defined and will depend on resources (funding and people)
 - Will do what we can afford to do, starting with highest priorities
- Work will be internationally distributed
- Solicited expressions of interest in cryogenic systems and vacuum work
 - Via e-mail on 10 October 2007 to cryogenics experts at various institutions world-wide and RDR leaders

Cryogenics work packages

- Heat loads
 - Static, dynamic, non-module, distribution, uncertainty
- Cryogenic plant design
 - Contract with industry, overall system "cycle" design
- Reliability, repair
 - Segmentation, load-sharing, maintenance
- Venting, pressure limits
 - Peak pressures, loss-of-vacuum, distribution of reliefs, vessels and pipes
- Surface impact
 - Grouping compressors, plants, trade-offs with dist'n
- ODH
 - Oxygen deficiency, surface buildings and tunnel

ilc

Cryo work packages (continued)

- Cryobox design
 - Distribution and tunnel end and bypass boxes
- Liquid control
 - 2-phase flow control, dynamic load changes, heaters
- Optimization
 - Trade cryomodule complexity and cost for cryosystem heat load
- 2K heat exchanger
 - 4 K to 2 K heat transfer to pumped vapor, pre-cool liquid supply, very large heat exchanger
- Standards
 - Regional, code compliance, hardware transfer
- Source cryogenics
 - e- and e+ source linacs, undulators

ic Cry

Cryo work packages (continued)

- Damping rings cryogenics
 - System unique and separate from Main Linac
- BDS cryogenics
 - System unique and separate from Main Linac
- Main Linac Vacuum
 - Beam vacuum and insulating vacuum for ML
- RTML vacuum
 - RTML tranport line vacuum
- RTML
 - RTML cryo, distribution and special objects
- Cryogenic systems EDR management

Institutions responding (so far)

- US and Canada
 - Fermilab
 - SLAC
 - TJNL
 - BNL
 - Triumf
 - ANL
- Europe
 - CERN
 - DESY
 - INFN
- Asia
 - KEK
 - India-IUAC

Work package conclusions

- Work package list is certainly not comprehensive; other topics may be added.
- ~10 man-years (5 FTE's for two years) of engineering and design labor are identified for EDR cryogenics.
 - For comparison, the RDR cryogenic system effort had less than 1 FTE of effort.
- Would like close to an FTE in each region through the EDR phase (~2 - 3 FTE minimum total).
- Since cryogenic experts around the world continue to have other, local commitments in addition to ILC, this work will require part-time (but significant fraction) efforts from at least 2-3 people in each region.
 - We do have this level of interest
 - Still need to verify institutional support

System integration

- System integration issues are identified for each work package
- Cryogenic system design involves collaboration with all areas
 - Sources, RTML, Main linac, DR, BDS
- Cryogenic systems include integration with many other technical systems
 - Cryomodules of all species, magnets, vacuum, CF&S, life safety (ODH)
- Cryogenic systems may be the most visible part of ILC in terms of surface impact
 - Buildings, compressors (noise), cooling towers (clouds)
 - Public perception of ILC
 - Close collaboration with CFS group

Next steps

- Will continue to discuss next steps during the remainder of this week, but my view is . . .
- Organization of EDR work
 - Refine work package definitions
 - Begin to determine work package allocation
 - Need resource availability from participating institutions
- Continue to add to parameters table
 - Distribute to and discuss with interface groups
- Start (in some cases continue) some of the highpriority technical work
 - For example, helium vessel pressure limits