

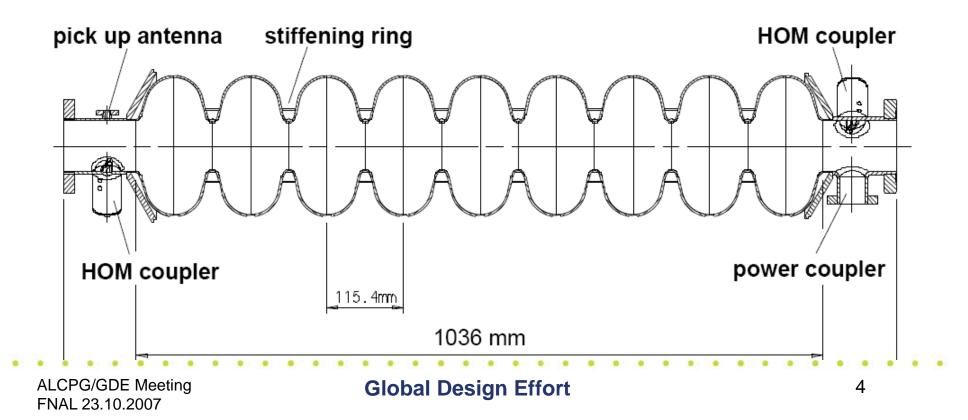
Cavity Work Packages

Lutz Lilje GDE

ALCPG/GDE Meeting FNAL 23.10.2007 **Global Design Effort**

1

Outline


- Request form PM
 - Progress and finding from KOM,
 - Component/system and the interfaces design parameters,
 - Work packages,
 - Summary of discussions in the parallel session
- will discuss this along the talk for Cavity
 - Performance, Design, Manufacturing
 - Cavity systems (coupler, tuner etc.) see next talk by H. Hayano

Cavity KOM Findings

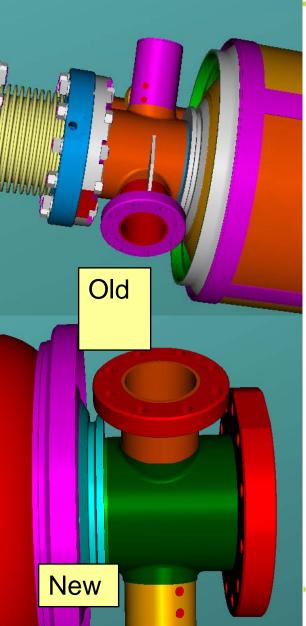
- Integration and Plug-compatibility
 - Definition of interface
 - Fixing outer envelope of cavity allows flexibility for RF design
 - Flange system needs technical evaluation
- Gradient performance
 - New results available available for 'S0'
 - Field emission is being reduced with specific surface preparation addressing sulphur contamination
 - Thermal breakdowns are now limitation causing still a significant spread in performance
 - Especially for new vendor cavities but also at last DESY production
 - » Diagnostics tools (temperature mapping) essential
 - Setting up new infrastructures will require effort
- Organizational
 - Down-selection for alternatives
 - Cost optimization
 - Integration of new R&D initiatives
- Industrialization
 - XFEL experience
 - new developments for module integration

Assumptions for Plug Compatibility

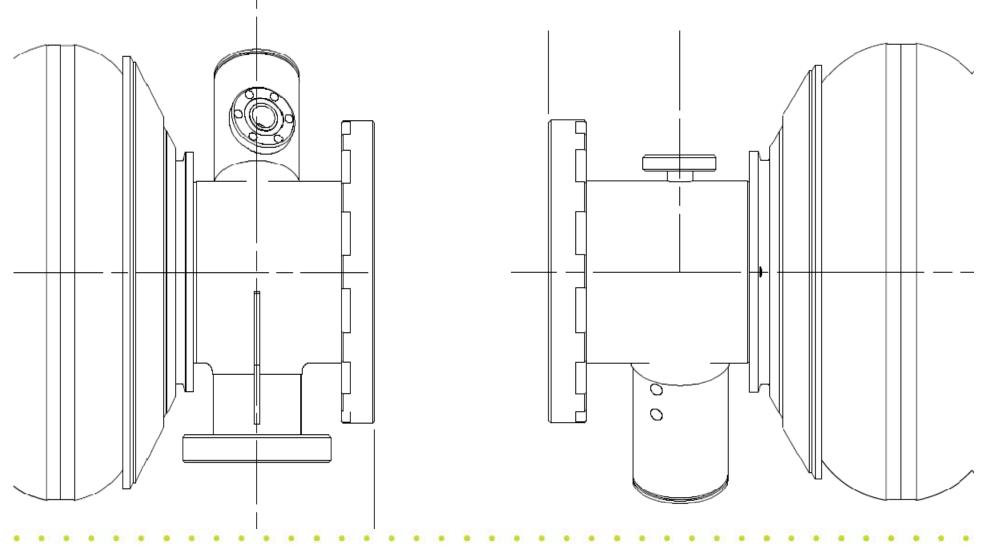
- Outer dimensions
 - Critical for cavity package and module groups
- RF Specification
 - When the cavity stays within its mechanical bounds possibly less critical for the interfaces to other systems
 - Likely exception: Iris diameter is beam dynamics issue

ILC Cavity RF Parameters – Fixed and Changeable

Parameter	Value
Type of accelerating structure	Standing Wave
Accelerating Mode	$TM_{010}, \pi mode$
Fundamental Frequency	1.300 GHz
Average installed gradient	$31.5 \mathrm{MV/m}$
Qualification gradient	35.0 MV/m
Installed quality factor	$\geq 1 \times 10^{10}$
Quality factor during qualification	$\geq 0.8 imes 10^{10}$
Active length	1.038 m
Number of cells	9
Cell to cell coupling	1.87%
Iris diameter	70 mm
R/Q	1036 Ω
Geometry factor	270 Ω
$\rm E_{peak}/E_{acc}$	2.0
$\rm B_{peak}/E_{acc}$	$4.26 \text{ mT MV}^{-1} \text{m}^{-1}$
Tuning range	$\pm 300 \text{ kHz}$
$\Delta f/\Delta L$	315 kHz/mm
Number of HOM couplers	2


ALCPG/GDE Meeting FNAL 23.10.2007

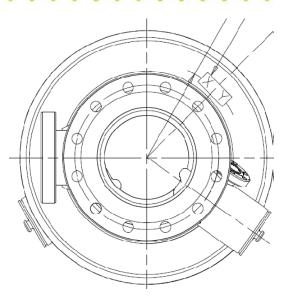
ir iic

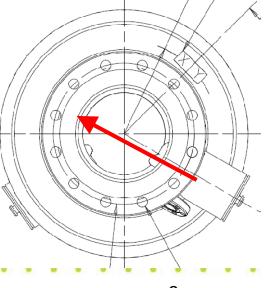

Cavity length, Diameter, Beam tube and Flange Design

- Length: 1247 mm
 - Will define a slot length with cryomodule group
- Maximum Outer Diameter:
 - Cells: 210 mm
 - HOM coupler: 232 mm
- Beamtube
 - 'Tesla short' diameter: 78 mm
- Flange system
 - 6 flanges total
 - see XFEL example
 - Several sealing systems available
 - Choice should take into account
 - Reliability
 - Potential re-assembly for re-test
 - Need WP to make a proposal
- Interconnecting bellow
 - after definition of flange system into module group's responsibility

ALCPG/GDE Meeting FNAL 23.10.2007

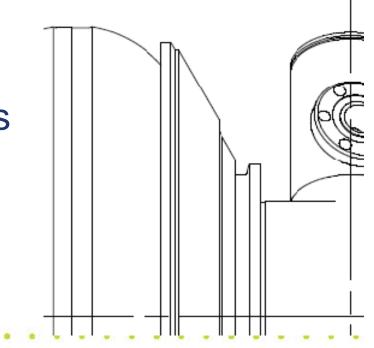
ALCPG/GDE Meeting FNAL 23.10.2007


Coupler Port Location


Issues

ic

- Wake-potential needs further look


- rotating one end group by 180° is likely solution
- Port position
 - Depends on thickness of conical disk and Magnetic shielding position
- Port size
 - Do we need larger power capability?
- Cabling
 - With tuner not at extreme position this is a bif more relaxed

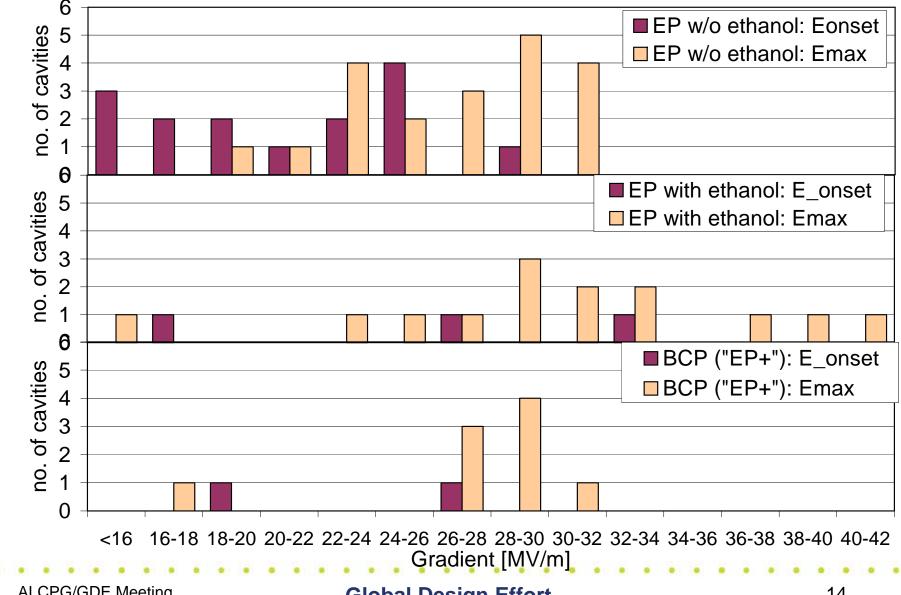
Definition of Weld Position for He Tank

- Tank welding after performance test
 - Conical disks part of the bare cavity
 - Tank material need be welded to disk
 - Magnetic shield position
- Technical evaluation of options needed

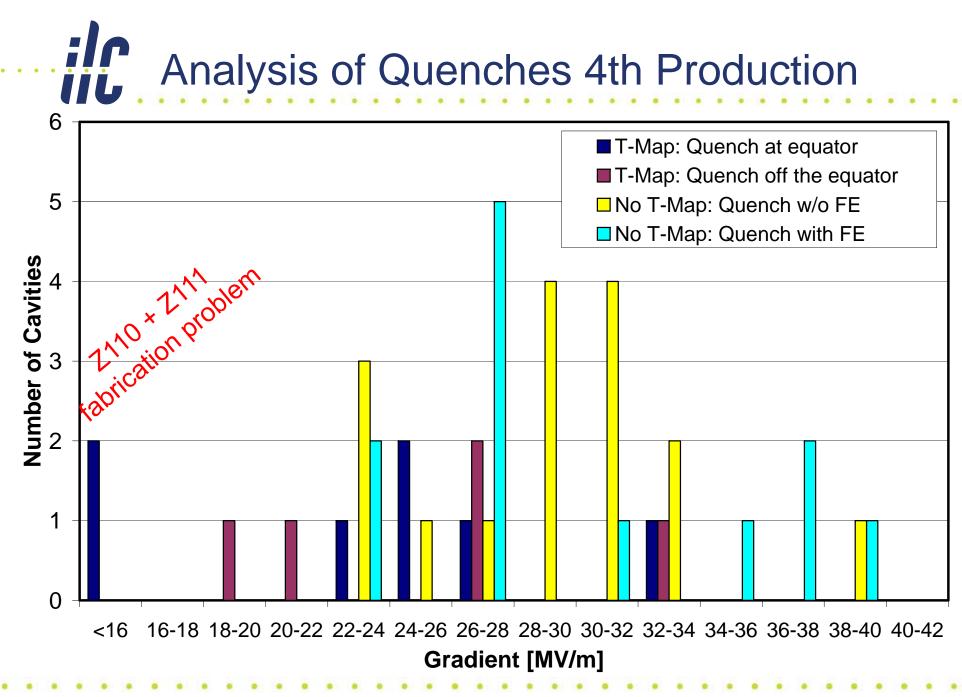
Other Topics

- Alignment tolerance: 300 um
- Referencing the Cavities
 - 'Reference ring' is one of the more expensive parts in the fabrications
 - are there better options than this?
 - Cavity supports are attaching to reference ring
- Magnetic shielding: 20 mG at Cavity for Q=10¹⁰
- Maximum allowed pressure
 - High pressure vessel codes need discussion
 - Some harmonization between US and EU, Japan more difficult
 - TBD:
 - 4 bar He vessel
 - cold, vacuum inside
 - » agreed
 - 2 bar (1.3 bar KEK number)
 - warm, vacuum inside ?
 - » not clear !!!
 - Action item:
 - compile list for different conditions
 - CHECHIA test cooldown conditions

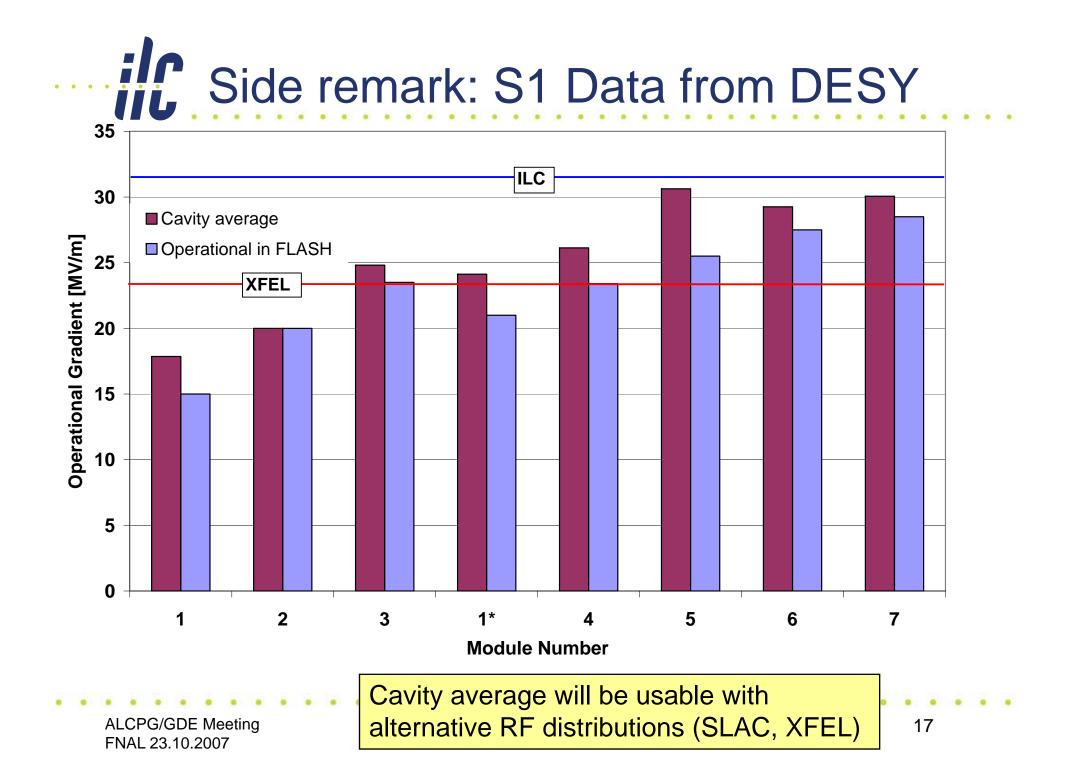
- S0
 - Achieve 35 MV/m in 9-cell cavity in vertical dewar tests (lowpower) with a sufficient yield
 - Staged approach with intermediate goals to track progress
- S1
 - Achieve 31.5 operational as specified in the BCD in more than one accelerating module
 - ... and enough overhead as described in the BCD.
- S2
 - a string of N modules with full xyz...by date ...
 - Need for a linac ?
 - Endurance testing

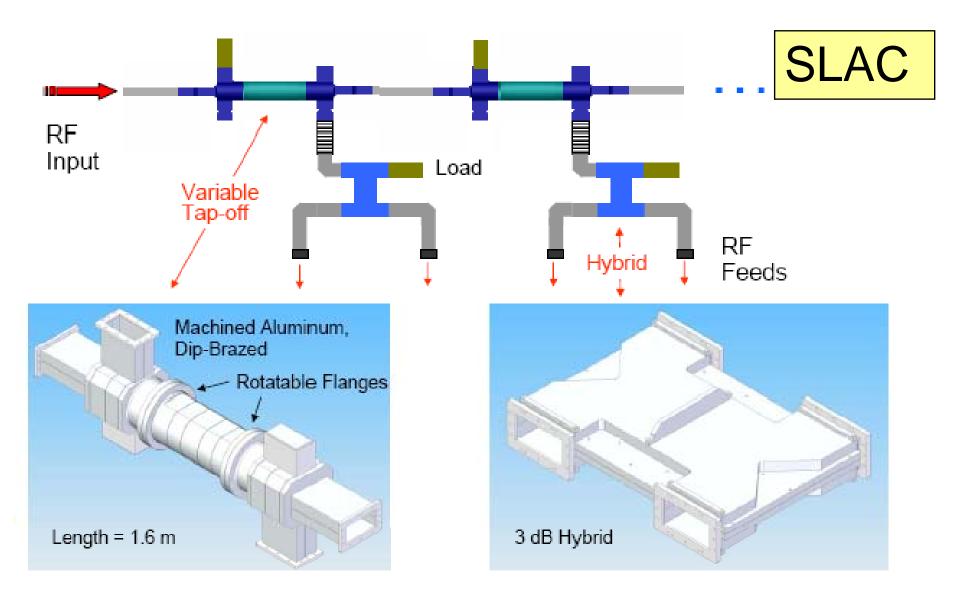

S0 Plan

- Three main activities which are closely coupled and partially progressing in parallel
 - This is needed to separate cavity preparation and production issues
- Single-cell R&D
 - Establishing more reliable final preparation parameters
 - Focus on the final rinse after EP before HPR:
 - E.g. Ultrasound, Short EP (or HF rinse), Ethanol, H2O2
- Tight-loop
 - International multi-cell cavity exchange
 - 1st round
 - Includes repeated processing in the same institute
 - » Consistency of preparation needs check
 - Comparison of regional differences in preparation and testing
 - 2nd round
 - Use single-cell results and implement on multi-cells
- Production-like effort
 - Monitor ongoing productions
 - Esp. XFEL preparation
 - Use qualified and new vendors
 - Use improved preparation process for an ultimate batch of cavities
- A lot of data will be (is already) available by the time for the EDR writing



- Three main activities which are closely coupled and partially progressing in parallel
 - This is needed to separate cavity preparation and production issues
 - Qualification of new vendors is difficult
 - Multi-cell results in Japan and US are only partially promising
 - Several cavities limited to gradients below 20 MV/m
 - This needs considerable resources for preparation and tests
 - Infrastructure not available
 - New installations no yet fully operational
 - KEK and ANL/FNAL
 - DESY sometimes
 - Infrastructure blocked
 - DESY progresses e.g. with module assembly for industry training
 - *Missing redundancy in infrastructures is an issue*


ALCPG/GDE Meeting FNAL 23.10.2007


ALCPG/GDE Meeting FNAL 23.10.2007

Cavity Performance Limits

- Field emission
 - New rinses seem successful
 - Simplest ones are possibly degrease and ethanol
 - Short EP is more effort, depends on implementation on multi-cells
 - Field emission was, is and will be an uphill battle
 - Need confirm results of new rinses across regions
 - Original idea was to use the cavity exchange for this
 - Quality control needs to be further improved
 - Better understanding of the HPR systems
 - Comparison underway (TTC)
- Thermal breakdowns (Quenches)
 - Especially with new vendors
 - Need to make sure that the cleaning steps including the etch before welding are done
 - Need to be able to distinguish whether quench is in equator or elsewhere: Temperature-mapping
 - Quality control needs further improvement
 - DESY 4th production last batch of 4 has two bad cavities
 - Several of the lower performing cavities show quenches in the equator weld
 - Analysis of quench locations could be the next step
 - Possibly destructive....
 - Could try to involve TTC again
 - Was successful for rinsing parameters

RF Distribution System without Circulators but with Variable Tap-offs (VTOs)

- The work packages have to account for some of the ongoing R&D as well as for the design and industrialization issues
- Main R&D packages are related to
 - Continuing 'S0'
 - e.g. Re-evaluation of low-power acceptance test specification in light of variable tab-offs in RF distribution
 - Most promising alternatives
 - Cavity shapes
 - Large-grain material
- Industrialization and cost optimization WP still need one more iteration on the scope
 - Integration of cost cutting proposals and related R&D initiatives

WP C1: Gradient Performance

- 1.1 Tight-loop effort
 - 1.1.1 Finalize the tight-loop process.
- 1.2 Production-like effort
 - 1.2.1 Treat 30 cavities with EP + ethanol process.
 - 1.2.2 Treat 20-30 cavities with EP, Degrease.
 - 1.2.3 Treat 10-20 cavities with fresh EP.
- 1.3 Preparation for ultimate cavity batch
 - 1.3.1 Evaluate data from tight-loop and production data
 - 1.3.2 Treat 30 cavities with ILC process
- 1.4 Single-cell program
- 1.5 Common performance evaluation
 - 1.5.1 Database setup
 - 1.5.2 Data evaluation between laboratories
- 1.6 Gradient proposal for the EDR
 - 1.6.1 Definition of vertical test gradient specification for ILC
 - 1.6.2 Final proposal for ILC gradient

- 2.1 Material
 - **2.1.1 Material specification**
- 2.2 Alternative materials
 - 2.2.1 Large grain cost evaluation
 - 2.2.2 Large grain multi-cell cavity development and testing
- 2.3 Fabrication method
 - **2.3.1 Analysis of EBW performance**
 - 2.3.2 EBW specification
- 2.4 High Pressure Vessel regulation

- 3.1 Baseline Process
 - 3.1.1 Process Specification
- 3.2 Alternatives
 - 3.2.1 Dry-ice

-

4 WP-C4. Cavity Design

- 4.1 Specification of outer envelope
 - 4.1.1 Outer diameter, length
 - 4.1.2 Sealing technology
 - 4.1.3 Input port diameter
- 4.2 Preparation for the cavity shape decision
 - 4.2.1 Definition of tests
 - 4.2.2 Testing of cavity shape alternatives
- 4.3 Lorentz detuning concept
 - 4.3.1 Evaluation of tests
- 4.4 Beam dynamics
 - 4.4.1 HOM Concept
 - 4.4.2 Wakefields
 - 4.4.3 Alignment
 - 4.4.4 Straightness

- Under discussion still!
- 5.1 Evaluation of Cost-cutting proposals
- 5.2. Industrialisation Issues
 - 5.2.1 Review of XFEL Industrialisation plan
 - 5.2.2. Models for Industrialisation in the regions

Example: ACD Down-select and Testing

- Testing of alternate Cavities requires (according to Rich Stanek's list)
 - Cavity shape:
 - 24-30 cavities in 3 modules with beam including
 - Low-power performance test
 - High-power test (individual or full module)
 - HOM testing with beam
 - Cavity material:
 - Cost-benefit analysis
 - 30 cavities in bench tests (low-power and high-power),
 - Performance test
 - Getting experience with pulsed operation
 - no module or beam test needed
 - Cavity 'Design For Manufacturing' (similar to XFEL)
 - Minor design changes for easier welding, simpler machining etc.
 - Few cavities in bench tests, if at all
 - For other changes
 - Needs discussion

- Work packages defined
 - includes an estimate on resources needed
- R&D WPs
 - Gradient performance
 - Encouraging results (also for the modules) but still significant amount of work to do
 - Program needs to make sure that sufficient diagnostic capacity is available
 - Focus need address new vendors and QC issues in weld preparation
 - Most promising ACDs are included
 - Cavity shape and material
- Design and Cost optimization
 - Develop ,plug-compatible concept further
 - some things are straight-forward, others need technical evaluation
 - Outer envelope being defined
 - New R&D initiatives have to be evaluated for their cost cutting/performance improvement first

.

.