Jet Energy Resolution in Dual-Fiber Readout Calorimeter

Anna Mazzacane Universita' del Salento for INFN & FNAL groups

> ALCPG Meeting Fermilab 22-27 October 2007

4th Concept

detector for ILC

Dual Readout calorimeter

500 GeV Di-Jet event display

A Strategy of Jet Reconstruction with Compensating Calorimeters

- Assume the jet made of 2 non-overlapping regions
 - <u>Core</u>: region of the calorimeter with overlapping showers
 - **Outliers**: hit cells separated from the core
- Measure the Core energy

using information from the calorimeter

Reconstruct Outliers individually

using tracking and/or calorimetry for charged or neutral particle

Jet Reconstruction Strategy

Plans for Jet Studies

 Use Compensating Calorimetry for ILC and Durham jet finder algorithm
 Study performance of the calorimeter and jet algorithm

Improve Resolution

with proper treatment of "outliers"
Delicate interplay among tracking, calorimetry, and muon detector In progress

Present

study

ALCPG FNAL Oct. 24, 2007

A Starting Point for this Strategy

use compensating calorimeter
 to reduce *fluctuation*

which dominate calorimeter resolution

1. Fluctuation in the em shower fraction, f_{em}

(fluctuations in the π^0 content of the cascade)

2. Fluctuation in the visible energy

(fluctuations in the nuclear binding energy losses)

Dual-Readout: Measure every shower twice –using Scintillation light and Cerenkovelight.

Dual Readout Fiber Hadronic Calorimeter

4th Concept Hadronic Calorimeter (first version*)

- Cu + scintillating fibers + Ĉerenkov fibers
- ~1.5° aperture angle
- ~ 10 λ_{int} depth
- Azimuth coverage down to 3.8°
- Barrel: 13924 cells
- Endcaps: 3164 x 2 cells

Fully projective geometry

4th Concept Hadronic Calorimeter Cells

Bottom view of single cell

Prospective

view of

clipped cell

0.3 mm radius

Plastic/Quartz fibers

Cell length: 150 cm

Top cell size:~ $8.8 \times 8.8 \text{ cm}^2$

Number of fibers inside each cell: ~1980

equally subdivided between Scintillating and Cerenkov

Bottom cell size: ~ $4.8 \times 4.8 \text{ cm}^2$

Fiber stepping ~2 mm

See C. Gatto's talk on Thursday (Calorimetry)

Simulation

- ILCroot framework
- Pandora-Pythia to generate
 - 1. $e^+e^- \rightarrow qq$ (q=uds) @ 60, 100, 140, 200, 300, 500 GeV
 - 2. $e^+e^- \rightarrow Z \rightarrow qq$ (q=uds) @ 91 GeV
- Fluka to track particles in the detectors
- Full Digitization/Clusterization for VXD, central tracker, and HCAL
- Full pattern recognition
 - Clusterization = collection of nearby "digits"
 - Unfolding of overlapping showers through Minuit fit to shower shape
- Fast rec-points (gaussian smearing of hits) for Muon detector

See C. Gatto's talk on Monday (Tracking)

Simulation Reconstruction Analysis in ILCroot Framework

CERN architecture (based on Alice's Aliroot)

Uses ROOT as infrastructure

- All ROOT tools (I/O, graphics, PROOF, data structure, etc)
- Extremely large community of users/developers

Six MDCs: robustness, reliability, portability

Single framework generation, simulation, reconstruction, analysis
 Available from Fermilab

ilc.fnal.gov/detector/rd/physics/detsim/ilcroot.shtml www.fisica.unile.it/~danieleb/IlcRoot

Calibration

Energy of HCAL calibrated in 2 steps:

1. Calibrate with single 40 GeV e⁻ raw E_{c} and E_{s}

2. Calibrate with single 40 GeV π^-

 η_C and η_S

ALCPG FNAL Oct. 24, 2007

Reconstructed Energy

Once HCAL calibrated, Calorimeter Energy:

$$E_{HCAL} = \frac{\eta_s \cdot E_s \cdot (\eta_c - 1) - \eta_c \cdot E_c \cdot (\eta_s - 1)}{\eta_c - \eta_s}$$

ALCPG FNAL Oct. 24, 2007

Jet Reconstruction Performance for di-jet events	Jet Reconstruction Performance at Z Pole (91 GeV)
 Jet Reconstructed Energy 	 Number of jets found
•Jet Energy Resolution	•Z Mass
	Jet Reconstruction Performance for di-jet events •Jet Reconstructed Energy •Jet Energy Resolution

Calorimeter Performance

Total reconstructed energy

Energy response

Energy resolution

ALCPG FNAL Oct. 24, 2007

Energy Response

Total Energy Resolution (Gaussian fit)

Total Energy Resolution (rms₉₀)

Jets Reconstruction Performance for di-jet events

Jet Energy reconstruction

Energy Resolution

ALCPG FNAL Oct. 24, 2007

Di-jet events $e^+e^- \rightarrow qq$ (q=uds) @ 60, 100, 140, 200, 300, 500 GeV

Jet Energy Resolution (gaussian fit)

25

Jet Energy Resolution (rms₉₀)

Jet Reconstruction Performance at Z Pole (91 GeV)

• Number of jets found with Durham (Ycut = 0.07)

Z Mass Resolution

ALCPG FNAL Oct. 24, 2007

Number of Jets found

Durham

YCut = 0.07

Z_o Mass (with Gaussian fit)

39.7 %/sqrt(E)

Z_o Mass (with RMS₉₀)

(rms₉₀: rms of central 90% of events) 32.8 %/sqrt(E)

30

Summary

• Resolution with a fiber Hadronic Calorimeter Total reconstructed Energy (clustering based on Calorimeter alone) $\sigma_E/E = 36.9\%/\sqrt{E} (\sigma) \ 31.2\%/\sqrt{E} (rms_{90})$ Jet reconstructed Energy (Calorimeter + Jet Finder) $\sigma_E/E = 42.2\%/\sqrt{E} (\sigma) \ 38.5\%/\sqrt{E} (rms_{90})$

Improving Resolution :

All the detectors are in the simulation: VXD.DCH.HCAL.MUD

Optimize Performance of the Calorimeter

e.g. measure neutrons to correct visible energy

(nuclear binding energy losses)

Use information from Tracking and Calorimetry

- * low transverse momenta tracks, decaying tracks (kinks, V0's), γ s
- * Leftover muons leaving the calorimeter

Backup slides

ALCPG FNAL Oct. 24, 2007

Total Absorption Dual Readout Calorimeter

- Uniform, integrated (EM+HAD) calorimeter
- High density (~8g/cm3) $\leftarrow \rightarrow$ 6-7 λ in a typical ILC calorimeter gap
- Linear response to hadrons and electrons (e/h=1)
- Excellent single particle and jet energy resolution
- Excellent electron/photon energy resolution
- Decoupled energy and spatial measurements of EM showers: three silicon pixel layers
- Total absorption calorimeter: minimal reliance on Monte Carlo modeling
- Longitudinal segmentation

Anna Mazzacane

Adam Para

Possible Calorimeter Design

- Heavy crystals (PbWO4, PbF2 doped with scintillator) or scintillating glass transparent to Cherenkov
- Crystal sizes of the order of 2.5×5×5 cm in the EM 'section' to 10×5×5 cm in the HAD section
- All crystals read-out via silicon photodetectors (hermeticity)
- Crystals glued into full-depth towers

Courtesy of Adam Para

ALCPG FNAL Oct. 24, 2007

Dual REAdout Module

http://www.phys.ttu.edu/dread REAM)

Back end of 2-meter deep module

> Physical channel structure

Pid Identification

E_{CM}=200 GeV

• Calorimetric Energy only

• Calorimetric Energy + Muon Spctrometer

