# ILD MDI/Integration WG Plan

T. Tauchi and K. Buesser ALCPG07, 26th October, FNAL

### Charge of the ILD MDI/Integration WG



#### Charge issued by the ILD Joint Steering Board:

- The MDI/working group is charged to produce a self-consistent design of the structure of the ILD detector from the viewpoint of machine-detector interface (MDI) and detector integration for the LOI that is to be submitted by October 1, 2008.
- Specifically, it covers the design of the beam pipes, magnets, iron return yoke, beam instrumentations, and their supports that require works by the detector group.
- Also, it should address general detector structure and assembly issues, where
  the aspects that affect the machine design will have initial priority. Beam
  background studies should be performed when necessary.
- The group should work closely with the machine people and the groups working on subdetectors that affect the structure of the ILD detector.
- (...)



# MDI Issues

### IR Design Optimization with engineering studies

- beam pipes, pumps, wakefields
- innermost raidus of VTX and B-field
- outer radius of support tube and inner radius of TPC
- calorimeters, pair monitor and beam instrument

### **Background Estimation**

- pairs v.s. B-field, (anti-)DID
- muons v.s. muon spoilers, collimation depth
- synchrotron radiations v.s. collimation depth, masks
- neutrons from pairs, extraction line and dump v.s. mask

# IR of GLD and LDC





# Relevant parameters for IR optimization

GLD and GLDc

LDC

| Machine parameter sets   | 1TeV, HiLum-1         |                | Nominal?              |
|--------------------------|-----------------------|----------------|-----------------------|
| L* (m)                   | 4.5                   | same at GLDc   | 4.05                  |
| B (Tesla)                | 3                     | 3.5 at GLDc    | 4                     |
| R <sub>Be</sub> (cm)     | 1.5                   | z < 5cm        | 1.4                   |
| R <sub>VTX</sub> (cm)    | 2.0                   | FPCCD          | 1.6                   |
| VTX angular acceptance   | cos <0.95             | 3 super-layers | cos <0.952            |
| Rfcal (cm)               | 8                     | z=2.3m         | 8                     |
| RBCAL (cm)               | 1 and 1.8             | z=4.3m         | 1.3                   |
| QD0,FCAL,BCAL<br>support | canti-lever<br>70cm Ф | W-tube         | canti-lever<br>58cm Ф |

Differences will be studied and tried to be understood.

# Detector Integration Issues

Detector assembly on surface Iron structure;

- deformation due to B-field
- Field uniformity and Leakage magnetic field

How to support inner detectors and QDO (39cmФ)

Opening, closing procedures, etc.

Underground hall requirements;

- temperature, humidity stability, the gradient
- utility (power, cooling water, gases, cables etc.)
- safety for fire, earth quake

### Push-pull issues such as;

- alignment of VTX and QD0
- slow settlement (  $100 \mu m/m$ onth is tolerable ?)
- Radiation, shielding around beam line
- Cryogenics system for solenoid, QD0

# Major Discussion Issues

- 1. Sub working groups to be organized
- IR design optimization
- Detector integration

### 2. Engineering studies

- Who are engineers at institutes? specialty and availability of FTE
- What engineering level is necessary?
   for Lol by 1 October 2008
   for EDR by July 2010
- 3. How to share tasks?

# Roadmap to ILD - Lol

http://ilcagenda.linearcollider.org/categoryDisplay.py?categld=129

- 1. Working group activities an meetings
  Phone meetings with Webex etc, and
  the WG mailing lists.
- 2. Series of ILD Workshop

  1st (2.5 days), in Europe, early January 2008
  2nd (1.5 days), TILC08, Sendai, 3-7 March 2008
  more
  - 3. Decision of ILD Detector Parameters in May 2008
- 4. ILD-Lol Submission, 1 October 2008