US ILC Test Beams

DOE/NSF ILC Detector RLD Review June 19 – 20, 2007 Jae Yu University of Texas at Arlington

Introduction Existing Facilities and Their Availabilities Notable Detector R&D Groups' Requests US Beam Test Activities and Plans Conclusions

1

Introduction

- International Linear Collider is the next generation machine for precision measurement at high $\sqrt{\hat{s}}$
- Critical physics measurements
 - Higgs production e.g. $e^+ e^- \rightarrow Zh \rightarrow qqbb$
 - separate from WW, ZZ (in all jet modes)
 - Precision higgs coupling measurements
 - g_{tth} from $e^+ e^- \rightarrow tth \rightarrow WWbbbb \rightarrow qqqqbbbb$
 - g_{zhh} from $e^+ e^- \rightarrow Zhh \rightarrow qqbbbb$
 - Higgs branching ratios h \rightarrow bb, WW^{*}, cc, gg, $\tau\tau$
 - etc
- All of these physics goals demand
 - Excellent jet mass resolution, sufficient for separation of W and Z
 - High efficiency and high purity flavor tagging capability
 - Excellent track momentum resolution
 - High precision LEP measurements

Can Traditional Calorimeter Meet the Requirements?

- ILC Physics demands unprecedented precision in detectors
- GDE schedule and WWSC/ILCSC recommendations strongly encourage two detectors by the end of 2008
- Many detector R&D activities reaching to the point of prototype beam tests
 - Need performance testing at the sufficient level
 - Gain information on practical issues of constructing and operating detectors
- Much progress made in understanding and developing PFAs and tools needed for detector designs
 - Hadronic shower behaviors need to be better understood
 - Models should be validated
- ILC Detector designs should be "in synch" with accelerator EDR
 - Most ideal if detector EDRs contain technologies that are performance tested in beam and understood beyond simulations for informed decisions

June 20, 2007

A Lateral Shower Widths Comparison

Technically Driven Timeline

ilr

ILC Detector Time Line 2010 2015 2005 2020 **ILC Construction** Det. R&D **Technology choices** Selection of ILC Detectors ILC **Physics** Program **ILC Global Detector Prototyping & calibration** N **I**C ILC ወ are Det. Det. here!! **Det. Construction/Installation** EDR Б **Detector R&D, ILC Detector** ILC Detector prototype testing,

Concept Development

Construction & Calibration

ILC Physics

To prepare the community and facilities ...

- IDTB07 workshop at FNAL on Jan. 19 21, 2007
 - Over 120 participants
- Goals
 - Assess the current status, capabilities and plans of facilities
 - Assess the current and planned detector test beam activities
 - Identify requirements for test beams to meet adequately the detector R&D needs
 - Plan and discuss for the future beam test activities
 - Feedback information to facilities and ILC detector and physics leadership
- Outcome: ILC Detector Test Beam Roadmap Document
 - Draft released at LCWS07 in DESY
 - Final version targeted to be released on July 1, 2007

Test Beam Facilities and Availabilities

Facilities	Momentum Range	# Beamlines	Particles	Availability and plans		
CERN PS	1 - 15 GeV	4	e, h, μ	LHC absolute priority, no TB starting Nov. 2007		
CERN SPS	10 - 400 GeV	4	e, h, μ	LHC absolute priority, no TB starting Nov. 2007		
DESY	1 - 6.5 GeV	3	e	> 3 months per year		
Fermilab	1-120 GeV	1	e, π, Κ, p; μ	continuous (@5% duty factor), except summer shutdown		
Frascati	25-750 MeV	1	е	6 months per year		
IHEP Beijing	1.1-1.5 GeV (primary) 0.4-1.2 GeV (secondary)	3	e [±] e [±] , π [±] , p	Continuous after March 2008 (unavailable before then)		
IHEP Protvino	1-45 GeV	4	e, π, Κ, p; μ	one month, twice per year		
J-PARC	Up to 3GeV		????	Available in 2009 earliest		
KEK Fuji	0.5 - 3.4 GeV	1	е	Available fall 2007, 240 days/year		
LBNL	1.5 GeV < 55 MeV < 30 MeV	1	e p n	Continuous		
SLAC	28.5 GeV (primary) 1.0 - 20 GeV (secondary)	1	e e [±] , p [±] , p	Parasitic to Pep II, non-concurrent with LCLS		

Demarteau

Facilities Summary

- Six low energy (<10GeV), electron facilities available at various time periods
- One med energy (<28GeV) available up to 2008 but uncertain beyond 2008 – SLAC ESA
- Two med to low E (<45GeV) hadron facilities
 - Limited availabilities once LHC turns on till the operation stabilizes
- Two high E hadron facilities
 - Required by most detector R&D groups
 - SPS limited once LHC turns on till the operation stabilizes

SLAC Test Beam Facilities

- ESA available through the end of 2008 w/ 28.5GeV e
 - a key facility used primarily for BI and MDI beam tests
 - No promise of operation beyond 2008 but a study group is working with directorate for concurrent ESA operation with LCLS
 - A good change to get LCLS halo down to ESA in 2009
 - Recent effort to extend ESA TB program awaits decisions
- LCLS commissioning to begin soon
 - Fully operational with secondary beam in 2009
- SABER
 - If approved some minimal running in 2007 and some accelerator testing in 2008
 - Primary electrons and positrons can be available but no hadrons
 - A bypass line planned to allow concurrent operation of SABER with LCLS

FNAL Facility

- Upgraded beam line in operation since Jan. 2007
 - Much improved rates at low energies (<6 GeV)
- Upgraded instrumentation
 - High precision particle ID
 - Precision position detectors
- Flexibility in spill structure within the 5% duty factor guideline
- Further extension of possibilities under discussion
 - Tagged neutrals
 - ILC-like spill structure
 - Large bore, high field magnet

Eric Ramberg Fixed upstream 30 cm Al target New movable 30 cm target location Meson Test Beam Facility 1000 **Proton Mode: 120 GeV protons** HESON CENTRA CHIOSENICS COUNTING ROOM transmitted through 94 MESON ENCLOSURE MAP upstream target MTest pion beam HV9 WYZ. Pion Mode: 8-66 GeV beam tuned for H04 secondaries from upstream target MB7 MC7 HB BELOV HC MCenter MIPP beam HS2 0350555 Pa 04 CO 12 CO 10 335355 P 9 Low Energy Pion Mode: 1-32 GeV KS3 HPO beam tuned for secondaries from 1217 new downstream 475 775 DETECTOR BLSG CIP HALLS target NOTE CHCL 1, 2, 3, 4 AND 5 IN PARCHINESIS DESIGNATE HOS CENCL 11 0 10 -368 (HS) RESEARCH DIVISION MESON ENCLOSURE HAN

Upstream target will be installed on a motion platform to improve rates x10

MTest Beam Layout and Modes

Some measured rates in the MTBF beamline

<u>Tune (GeV)</u>	Rate in MT6/spill*	e ⁻ fraction	<u>Resolution</u>	
120	800,000	0	-	
66**	90,000	0	-	
33	40,000	0.7 %	1.0 %	
16	14,000	10 %	1.2 %	
8	5,000	30 %	-	
4	500	60 %	2.4 %	
16***	72,000	20 %	5 %	
8	44,000	30 %	5 %	
4	27,000	80 %	5 %	
2	7,000	>90 %	5 %	
1	7,000	>90 %	10 %	

Pion prediction 1%

*(Rates are normalized to 2.4E12 protons in Main Injector)

**(Rates in green are for pion mode)

*** (Rates in red are for low energy pion mode. These rates can improve x10 with upstream target removal.) J. Yu

Notable requests at IDTB07 workshop

- Virtually all detector R&D groups need e, μ and hadrons in wide momentum range at various stages of R&D
- ILC beam time structure (1ms beam + 199ms blank)
 - VTX, TRK and CAL electronics
- Large bore, high field magnet (up to 5T)
 - VTX and tracking groups
- Mimicking hadron jets
 - VTX, TRK and CAL
- Tagged neutron beams
- Common DAQ hardware and software
- Common online and offline software
 - Reconstruction and analysis software

Mimicking ILC Beam Time Structure

- ILC-like macro-structure: 1ms beam + 199ms blank
- Important to perform testing in as realistic a condition as possible
- Requests have been made by
 - For ECAL electronics testing
 - Vertexing and tracking community @ IDTB07
 - Tracking R&D review report recommendations
- SLAC can provide this
 - But 3 consecutive pulses
- Fermilab contacted for a possibility
 - Neutrino beams had such a short pulse structure but from TeV

Can Fermilab Test Beam simulate ILC structure?

Possible path to ILC beam structure:

- Fill Main Injector with 4 Booster batches, with 19 nsec RF structure.
- Turn on already existing 2.5 MHz coalescing cavities. This results in a 400 nsec particle bunch spacing, with gap after 4 buckets.
- Implement a shorter 1msec? partial extraction cycle ('ping') using current quadrupole resonance magnet.
- Fit 5 of these pings in a 1 second spill

How important is keeping the micro structure? How closely does the macro structure have to be kept?

Large Bore, High Field Magnet

- The tacking R&D review report encourages strongly on the need for a tracking & vertexing common test facility
 - Tests under magnetic field as close a field strength to the real thing - necessary to demonstrate performance of detectors and electronics
- Some CAL Technology testing
- Some solutions are being looked into
 - TRIUMPH: B=2T, ID=1m ID, L= 2.2m
 - AMY Solenoid: B=3T, ID=2.2m, L= 1.6m
 - Purchasing a new split coil solenoid to allow normal beam incidence: B=3 5T, ID=0.25 m, L=0.4m
- Discussion on-going to define the specification of the magnet
 - Will probably have to wait till better coordinating structure implemented

Improving Simulation

- Critical for ILC detector R&D, especially for PFA development
- Current models do not describe data too well, not just shower shapes
- Data incorporated into the models are from 70s
 - Work ongoing to incorporate data after 70s
- Turn around time seems to be quite long (typically over a decade??)
 - How can this turn around time be shortened to be useful for ILC?
- Do fresh new x-sec data help?
- What kind of data do we need?
 - Will neutral hadrons in a prototype detector helpful?

Tagged Neutral Hadron Beam Facility

- A new proposal from MiPP gives high possibilities of momentum tagged neutral hadron beams at FNAL
- Do we need beam test with neutral hadrons?
 - Successful PFA means the HCAL measures neutral hadrons well with minimal confusion
 - Simulation models need some low E neutral hadron data, despite isospin symmetry
 - Hadron calorimeter calibration can use momentum tagged neutral hadrons
- Can we trigger effectively?
 - What is the purity?
 - Can detectors and DAQ handle the rates?
- What energy range?
 - Which ones do we need to understand better?

Point of Merge for DAQ Commonality

Worldwide Detector R&D Needs

Detectors	N_Groups	Particle Species	P (GeV)	Magnet (Tesla)	N_Weeks/yr	ILC time structure	Note
BI&MDI	2E+8ESA+1F+ 2C+3BC	e	up to 100	Not specified	64		Mostly low E elec
Vertex	10	e, π, p; μ	up to 100	1 – 3	40	Yes	
Tracker	3TPC+ 2Si	e, π, p; μ	up to 100	1.5 - >3	20	Yes	
Cal*	5 ECALs+3 DHCALs + 5 AHCALs	e, n, π, Κ, p; μ	1 - >=120	Not specified	30 – 60	Yes	
Muon/TCMT	3	e, π, μ	1 ->=120	Not specified	12		

*Note: Most calorimeter R&D activities world-wide are organized under CALICE collaboration.

Some of these can work concurrently, but many can't!

BI and MDI Beam Test Activities

- Very active program with close worldwide collaboration
- Activities
 - 6 approved test beam experiments@ SLAC ESA: T-474, T-475, T- 480, T-487, T-488, T-490 @ SLAC ESA
 - MDI-related Experiments
 - Collimator Wakefield Studies (T-480)
 - Energy spectrometer prototypes (T-474/491 and T-475)
 - IR background studies for IP BPMs (T-488)
 - EMI studies
 - Beam Instrumentation Experiments
 - RF BPM prototypes for ILC Linac (part of T-474)
 - Bunch length diagnostics for ILC and LCLS (includes T-487)
- Plans
 - Continue ESA program, requesting 4 weeks of Beam Tests
 - Beam CAL prototype in 2008
 - Gam CAL prototype in 2008 2009

June 20, 2007

US Beam Test Activities

- Vertex Groups
 - LBNL group performed irradiation tests at LBNL facility
- Calorimeter Groups
 - DREAM @ CERN in 2006
 - RPC chamber tests @ FNAL MTBF in Feb. 2006
 - GEM Chamber tests @ KAERI in 2006 and @FNAL in Mar. – Apr. 2007
- Muon and TCMT
 - NIU TCMT participated in CALICE @ CERN in 2006
 - FNAL Scint-based muon detector beam tested in 2006

CAL Schedule and Plans

- Summer 2007 Mid 2008
 - Complete Vertical Slice Test @ MTBF (July 2007)
 - Complete 1m³ prototype RPC (400k channels)
 - Develop large scale GEM unit chambers (30cmx1m)
- Mid late 2008
 - Complete RPC beam exposure for MC validation together with CALICE Si/W and/or Sc/W ECAL
 - SLAC-Oregon SiW ECAL in e beam in 2008
 - Start GEM 1m³ prototype stack construction if funding allows
 - Beam test TGEM based prototype as an alternate, cost reducing solution
- Late 2008 2009
 - Complete GEM 1m³ prototype stack
 - Beam exposure of (hopefully) a full 40 layer stack GEM DHCAL
 - SiD Si/W ECAL Testing w/ HCALs in hadron beams
 - Dual readout calorimeter prototype in beams

Vertex and Tracking Plans

- Vertex
 - LBNL Thin Pixel Pilot Telescope @ MTBF in 2007 (T966)
 - EMI testing at SLAC
 - Various prototype testing at FNAL
- Tracking
 - Drift Chamber with Cluster Counting (CluCou)
 - Time Projection Chamber (LCTPC)
 - Large TPC prototype testing expected shortly
 - Silicon Strip Tracking
 - As additional tracking with TPC (SiLC)
 - Silicon tracking only (SiD)

Muon and TCMT Plans

- Remaining 2007
 - NIU TCMT to participate in CALICE physics run @ CERN
 - Muon group to test prototype strips and FE electronics/DAQ and existing strip-scint. planes.
- 2008
 - TCMT to be part of CALICE run @ FNAL
 - Add new strip-scintillator plane(s) w/ 100 200 strips and prototype electronics: 500 channels
 - Many more scint pixels & electronics channels for tail-catcher.
- Beyond 2008
 - New electronics on existing planes

Conclusions

- Beam tests a critical ingredient in making informed decision in designing an ILC detector
 - Most detector R&D groups try to complete beam tests by late 2009
- US Detector Beam Test activities picking up steam
 - Has been trailing European and Asian efforts
 - Rich program planned in the coming few years
 - Many groups are collaborating closely with groups in other regions
- Beam Test Facility becoming scarce
 - SLAC ESA's fate beyond 2008 not clear
 - In FY08 and better part of FY09, FNAL practically the only facility with high energy hadrons
 - FNAL facility needs to be prepared for a large influx of requests
 - Revive fixed target beam lines?
- Continued strong support for US R&D groups' beam tests critical to keep the competitive edge
 - Simulations alone does not suffice

June 20, 2007

