Compensating and Dual-readout Calorimetry

John Hauptman

Linear Collider Detector R&D Review ANL 19-20 June 2007

Contents

- •DREAM and 4th Concept
- •GLD Compensating PFA calorimeter
- •Planar Dual Readout

•What is needed over the next 5 years

June 4, 2007: GLD+LDC will presumably propose a PFA calorimeter; 4th will propose a dual-readout calorimeter.

• DREAM and 4th Concept

- Proof-of-principle beam test in June 2003; EM fraction fluctuations in hadronic showers (*five papers published in NIM*)
- Crystal dual-readout (two more papers)
- Neutrons for BE loss fluctuations (one more paper)
- Design of an ILC concept detector incorporating these results:
 - excellent energy resolution for W,Z reconstruction to jets
 - novel particle identification
 - near-perfect hermeticity
 - readout at rear (depth segmentation a hindrance, not a help)

Four distinct benefits of dual-readout calorimetry

(1) Dual-readout is easy and robust; (3) Absolute hadronic energy linearity;

(2) Possibility of excellent energy resolution; (4) Excellent and novel particle identification

DREAM module, 2003 (easy)

110 19-06-03 22:15h onnents in North to repair a tor, intervention will out 1 hour. be off during the intervention : 77500 + Natel 160137 ocess EA: Phone NICKIA

)

Calibrated with electrons at 40 GeV

Measure EM fraction shower-by-shower ... nicely and linearly correlated with the Cerenkov signal.

The simplest possible description of the calorimeter Cerenkov and scintillation response to hadronic energy E

$$(e/h)_C = \eta_C \approx 5$$
$$(e/h)_S = \eta_S \approx 1.4$$

$$C = [f_{em} + (1 - f_{em})/\eta_C]E$$

$$S = [f_{em} + (1 - f_{em})/\eta_S]E$$

 $\rightarrow C/E = 1/\eta_C + f_{em}(1 - 1/\eta_C)$

Data NIM A537 (2005) 537.

Possibility of excellent energy resolution

Scintillating fibers only

Scint + Cerenkov fibers $f_{EM} \propto (C/E_{shower} - 1/\eta_C)$ (4% leakage fluctuations) Scint + Cerenkov $f_{EM} \propto (C/E_{beam} - 1/\eta_C)$ (suppresses leakage)

Absolute hadronic energy linearity

DREAM module *calibrated with 40 GeV e⁻ into the centers of each tower* responds linearly to π^- and "jets" from 20 to 300 GeV.

Hadronic linearity may be the most important achievement of dualreadout calorimetry.

Data NIM A537 (2005) 537.

Novel particle Identification: $e, \pi, \mu, q \rightarrow jet$

Muon identification: muons and pions (80 GeV)

Next: measure neutrons in hadronic showers (GEANT3 calc.)

... to reduce effects of fluctuations in BE losses on energy resolution

•GLD Compensating PFA calorimeter

Detailed design:

- * 8mm Pb+2mm Scintillator
- * Light collection, calculations
- * Excellent understanding of the neutrons

GLD: neutrons in space and time - a good understanding

GLD: scintillator energy vs. time & energy resolution vs. time

GLD: energy resolutions and constant terms for electrons and pions

•Planar Dual Readout

- The proponents have done a GEANT calculation with several fractions of pions and photons mixed together in a "large homogeneous medium" and claim 20%/sqrt(E).
- There is no 'detector GEANT'.
- No data.
- Nevertheless, claims are made that mirror DREAM results.

What is needed over the next 5 years

- Support for continuing DREAM tests (ADR funding is limited)
- Support for design and building of the 'best possible' fiber dual-readout module with time-history readout (about \$600K + electronics)
- Support for crystal dual-readout (about \$200K + electronics)
- Laboratory engineering of fiber and crystal calorimeters as "scalable" modules for an EDR (begun at Fermilab)

This totals to about \$1.7M over five years. Colleagues, visitors, and collaborators welcome.

Dual readout calorimetry: support, goals, priorities and resource needs

Task	Prior support	Goals & Priorities	Milestones	Resource needs
DREAM tests	ADR/TTU \$125K/2y	 proof-of-principle neutron measurements fiber readout electronics and DAQ 	2003 Jun: achieved 2006 Nov: achieved 2007 Jun: crystal & neutrons	electronics, test: \$100K photoconverters \$ 50K personnel: \$100K
"Best" fiber	LCRD/ISU \$ 10K/'06 ISU/4th \$ 25K/'07	 Eres = 30%/sqrt(E) "scalable" module fiber volume uniformity Cpe = 100 pe/GeV 	2007 Jun: n test 2007 Dec: design 2008 Sep: first module 2009 Feb: next 8 modules	full modules: \$700K personnel: \$300K
Crystal	LCRD/TTU \$ 20K/'06	 Sc & Cer separation suitable crystal or glass Sc & Cer separation photoconverter 	2006 Nov: achieved 2008 Mar: suitable crystal 2008 Dec: for experiment 2008 Dec: pc/elec/readout	small module: \$200K personnel: \$50K
Engineering	ISU/Fermilab \$ 5K	 conceptual ideas truncated pyramid; hermetic; scalable module and supports ILC concept structure 	2007 May: achieved 2007 Dec: concep'l design 2008 Feb: module design 2009 May: built prototype 2010 Aug: calorimeter EDR	fiber+crystal modules: \$150K
Total	<pre>\$ 155K/2y (non-LCRD) \$ 30K/2y (LCRD funds)</pre>			\$1650K

ADR is Advanced Detector Research program of DoE; additional funds from State of Texas. ISU is Iowa State University overhead kick-back funds in J. Hauptman account. About \$10K (of \$25K total) spent on calorimeter. Fermilab engineering support by Bob Wands, Ingrid Fang, and Zhijing Tang.

Summary and pitch: dual readout & 4th in the US

- Excellent progress since 4th cold start at Snowmass Aug 2005 60 members 14 institutions 8 countries 3 regions
- GLD+LDC will most likely propose a detector with TPC tracking, PFA calorimeter, Fe-based muon
- We will propose a dual readout calorimeter as a tested, known and superior technology
- We need LCD R&D support to keep this only other calorimeter option alive. It is the heart of 4th.
- It might also be important for SiD, or GLD/LDC ...
- Orthogonality, and more: no-Fe dual solenoids for muons, cluster counting KLOE for tracking, ILCroot for software and analysis (ilc.fnal.gov/detector/rd/physics/detsim/ilcroot.shtml)

We can lose dual-readout to INFN (now in DREAM); "use it or lose it"

Extras

- 1. "triple readout"
- 2. DREAM details
- 3. particle ID rms per channel
- 4. energy resolutions

Triple-readout optical fiber calorimeter:

"LESSON 6: To improve energy resolution, measure every fluctuation event-by-event"

• Spatial fluctuations are huge, λ_{Int} , with local high density EM deposits. — fine spatial sampling with scintillation fibers every 2-3 mm.

- EM fraction fluctuations are huge, 10% 90%, of total shower energy.
 - measure EM content with Cerenkov fibers, Eth ~ 0.25 MeV, mostly electrons from $\pi^0 \rightarrow \gamma \gamma$

• Binding energy (BE) loss fluctuations from nuclear breakup

measure MeV neutron content of showers

Average values for one particle species or another are of no consequence - only fluctuations from the average are important.

• Some characteristics of the DREAM detector

- Depth 200 cm (10.0 λ_{int})
- Effective radius 16.2 cm (0.81 λ_{int} , 8.0 ρ_M)
- Mass instrumented volume 1030 kg $\,$
- Number of fibers 35910, diameter 0.8 mm, total length \approx 90 km
- Hexagonal towers (19), each read out by 2 PMTs

rms fluctuations within a shower

$$\sum_{i}^{N} [C_i - S_i]^2 / N$$

(N=19 channels)

What 20% buys you for W and Z decay to 2-jet mass reconstruction:

Both jets are sampled from DREAM data with measured spatial and energy fluctuations

