LCDRD ECal R&D

R. Frey, University of Oregon

Physics goals drive the design

- ECal with scintillator tiles (Project 6.2)
 - Colorado
- ECal design studies (Project 6.10)
 - Kansas
- Development of an silicon-tungsten ECal (Project 6.5)
 - SLAC, <u>Oregon</u>, <u>UC Davis</u>, BNL, Annecy

Hadronic final states and PFA

Complementarity with LHC: LC should strive to do physics with **all** final states.

- 1. Charged particles in jets more precisely measured in tracker
- 2. Jet energy 64% charged (typ.)

Separate charged/neutrals in calor.

- ⇒ The "Particle Flow" paradigm
- ECAL: dense, highly segmented (an "imaging calorimeter")

tau id and polarization

- Analysis of tau final states can provide crucial information on new physics
- Important & broad example:

$$e^+e^- \to \tilde{\tau}_1^+ \tilde{\tau}_1^- \ , \ \tilde{\tau}_1^{\pm} \to \tilde{\chi}_1^0 \tau^{\pm}$$

The SUSY model leaves fingerprint on tau polarization:

$$\widetilde{\chi}_{1} = N_{11}\widetilde{\mathbf{B}} + N_{12}\widetilde{\mathbf{W}} + N_{13}\widetilde{\mathbf{H}}_{1} + N_{14}\widetilde{\mathbf{H}}_{2}$$

- mSUGRA: $\tilde{\chi}_1 \sim \widetilde{B} \Rightarrow P_\tau \approx +1$
- non-universal SUGRA: $\tilde{\chi}_1 \sim \tilde{H} \Rightarrow P_\tau \approx \cos^2 \theta_\tau \sin^2 \theta_\tau$
- AMSB: $\tilde{\chi}_1 \sim \widetilde{W} \Rightarrow P_\tau \approx -1$
- GMSB: $\tilde{\tau}_1^{\pm} \to \widetilde{G}\tau^{\pm} \Rightarrow P_{\tau} \approx \sin^2 \theta_{\tau} \cos^2 \theta_{\tau}$

References:

M. Nojiri, PRD 51 (1995)

E. Boos, et al, EPJC 30 (1993)

Godbole, Guchait, Roy, Phys Lett B (2005)

tau polarization (contd) - measurement

Separate the important decay modes:

•
$$\tau^+ \rightarrow \rho^+ \nu \quad (\pi^+ \pi^0 \nu)$$

•
$$\tau^+ \rightarrow \pi^+ \nu \quad (\pi^+ \nu)$$

•
$$\tau^+ \to a_1^+ \nu \ (\pi^+ \pi^+ \pi^- \nu, \pi^+ \pi^0 \pi^0 \nu)$$

and measure the energy spectrum as done at LEP (ALEPH best by ~2×)

An important tool to have in the box.

an imaging calorimeter (contd)

In addition to jets and taus:

- Charged particle tracking, especially V0 recognition in silicon trackers
- id hadrons which begin showering in the ECal
- Photon vertexing
 - (e.g. GMSB SUSY)
- π^{o} id
 - to improve jet resolution (G. Wilson, Kansas)
 - final state id, eg $\tau \rightarrow \rho \nu$
- electron id in/near jets
- Bhabhas, and acollinearity
- Hermiticity!

Segmentation requirement

- In general, we wish to resolve individual photons from jets, tau decays, etc.
- The resolving power depends on Moliere radius and segmentation.
- We want segmentation significantly smaller than R_m

Two EM-shower separability in LEP data with the OPAL Si-W LumCal (David Strom):

OPAL

Ouising 0.8

Ouising 0.6

Ouising 0.6

Ouising 0.6

Ouising 0.7

Ouising 0.8

$$f_E \simeq \frac{R_{cal}}{\sqrt{R_M^2 + (4d_{pad})^2}}$$

d= 2.5mm , $R_M\sim$ 17mm

R Frey ANL R&D Review

U. Of Colorado R&D (Project 6.2)

- Offset scintillator tiles to improve spatial resolution
 - Proof of principle in simulation with single particles
 - Requires studies of jet reconstruction
- → For application now to scintillator HCal

- SiPM development for scintillator options
- Simulation studies for forward calorimetry
 - SUSY and SUSY background

Investigation of ECAL Concepts Designed for Particle Flow

Project 6.10, PI Graham W. Wilson, University of Kansas *ILC Detector R&D Review, Argonne, June 2007*

Overview

- Physics-driven ILC detector designs push the calorimetry in new directions.
- Physics needs:
 - Hermeticity
 - Neutrinos, SUSY particles etc
 - Jet energy measurement
 - Reconstruct W, Z, h, ...
 - General-purpose performance
 - Prepare for the unexpected
 - Retain reasonable EM resolution, timing resolution.
- Particle-Flow approach has many open questions and opportunities for innovation
 - ECAL is where showers start,
 is a big cost driver, and is at
 the heart of understanding

harry to design a detector

- Assuming an excellent tracker, current PFA approaches indicate E_{jet} resolution has 3 major contributions
- 1. Confusion (double counting).
- 2. Intrinsic hadronic energy resolution.
- 3. Intrinsic EM energy resolution.
- This project focusses on investigating approaches which can address these limiting factors.
- 1. Larger detector (GLD/LDC like)
 - Cost effective ECAL
 - Investigate ECALs with Si and Scint
- 3. High granularity ECAL for precision photon measurement
 - Use π^0 mass constraint to improve σ_E
 - Only use Si near the front of the ECAL?
- 1,2. Precision timing to resolve 9 confusion/reconstruct K⁰_L,n using TOF

Example detector model

A radially staggered buildable analog EM calorimeter.

High granularity, Tungsten absorber, B = 3T.

R(m) Nlayers X0 Active Cell-size (mm)

EM Barrel 1: $2.10 10 0.5 Si 2.5 \times 2.5 \times 0.32$

EM Barrel 2: $2.13 ext{ } 10 ext{ } 0.5 ext{ } Si ext{ } 10 ext{ } \times 10 ext{ } \times 0.32$

EM Barrel 3: $2.16\ 20\ 0.5\ Sc\ 20 \times 20 \times 2$

Choices made based on 2005 R&D work, driven by making a sensible, robust design with aggressive performance and minimizing Silicon area in a GLD-scale detector.

Expect: $\sigma_E/E = 11\%/\sqrt{E}$ at low energy

frankyaug05, with N. Graf, M. Thomson

50 GeV photon^o

Using π^0 mass constraint to improve energy resolution of prompt EM component of jets

With aggressive design, have demonstrated that 300 µm position resolution is achievable for a 1 GeV photon.

Perfect pairing $\rightarrow 9.4\%/\sqrt{E}$

All results here include the combinatoric issues.

Fast Timing / Temporal Calorimetry

Idea: time resolution at below the 100 ps level is now easily achievable with dedicated detectors. Can it be applied in a useful way in an ILC detector?

Can TOF help measure neutral hadrons at low p?

Can help resolving γ/π^{\pm} . (PID by TOF possible – but redundant with dE/dx in a TPC-based detector).

HCAL (LDC DOD)

TQF

A Silicon-Tungsten ECal with Integrated Electronics for the ILC (Project 6.5)

Laver Assembly

Baseline configuration:

- transverse seg.: 13 mm² pixels
- longitudinal: $(20 \times 5/7 X_0)$ $+ (10 \times 10/7 X_0)$ \Rightarrow 17%/sqrt(E)
- 1 mm readout gaps \Rightarrow 13 mm effective Moliere radius

Currently optimized for the SiD concept

Si/W ECal R&D Collaboration

M. Breidenbach, D. Freytag, N. Graf, R. Herbst, G. Haller, J. Jaros Stanford Linear Accelerator Center

J. Brau, R. Frey, D. Strom, undergraduates *U. Oregon*

V. Radeka

Brookhaven National Lab

- B. Holbrook, R. Lander, M. Tripathi *UC Davis*
- S. Adloff, F. Cadoux, J. Jacquemier, Y. Karyotakis

 LAPP Annecy

- KPiX readout chip
- downstream readout
- mechanical design and integration
- detector development
- readout electronics

- readout electronics
- cable development
- bump bonding
- mechanical design and integration

Goals of the R&D

Design a practical ECal which (1) meets (or exceeds) the stringent ILC physics requirements (2) with a technology that would actually work at the ILC.

- The physics case calls for a dense (small R_m), highly segmented "imaging calorimeter" with modest EM energy resolution
 - ⇒ W-Si pixel sampling calorimeter
- The key to making this practical is a <u>highly integrated electronic</u> readout:
 - readout channel count = pixel count /~1000
 - cost ≈ independent of trans. segmentation for seg. > 2-3 mm
 - 3.6 mm is current default
 - allows for a small readout gap (1 mm) \Rightarrow small effective R_m (13 mm)
 - low power budget (passive cooling)
 - handles the large dynamic range of energy depositions (few thousand)
- This takes some time to develop (getting close).

Silicon detector layout and segmentation

Critical design parameter is the gap between layers

- Small gap maintains small Moliere radius
- Larger Rm ⇒ larger detector to maintain shower separability ⇒ cost !
- Small gap makes a cost-controlled compact detector practical

readout gap cross section -- schematic

Conceptual Schematic - Not to scale

Energy resolution

- No physics case has emerged for EM energy resolution better than ~0.15/√E
- We have studied how to optimize energy resolution vs cost and Moliere radius

Reset

KPiX Cell 1 of 1024

64-channel prototypes:

- v1 delivered March 2006
- v4 currently under test
- v5 submitted (June '07)

It's a complicated beast – will need a v6 before going to the full 1024-channel chip

Dynamic Range

KPiX-2 prototype on the test bench

Power

Passive conduction of 20 mW to module end (≈75 cm) via the tungsten radiator results in a few °C temperature increase ⇒ OK!

Noise in KPiX-4

- 1 MIP = 3.9 fC ⇒ meets ECal S/N spec of 8/1
- outliers probably due to routing issues

Noise is gaussian

⇒ Can set threshold at ≈ 0.5 MIP

prototype Si detector studies

Response of detectors to Cosmics
(Single 5mm pixel)
Simulate LC electronics
(noise somewhat better)

Errors do not include $\sim 10\%$ calibration uncertainty (no source calibration)

v2 Si detector – for full-depth test module

- 6 inch wafer
- 1024 13 mm² pixels
- improved trace layout near KPiX to reduce capacitance
- procurement in progress (it will take 6-12 months to complete the 40wafer purchase – funding limited)

Readout flex cable (digitized signals, power&control)

First prototype:

- 2 stations
- Buried signal layer between power and ground
- Wire bond connections
- No problem for prototypes

For ECal:

- ~6 stations: should be OK
- Would like to determine length limit for next round (vias and multilayers difficult for ~1m)

on multiple (2) Si-W R&D efforts

- The CALICE collaboration includes a very significant and well-funded Si-W R&D effort
 - Their effort has focused on developing a test beam prototype using non-ILC technology
 - Has collected data at DESY and CERN during the last year
 - More recently they have been developing a generation II design
- We decided to directly develop an ILC design (gen. II)
 - Technology was proven in SLD, ALEPH, OPAL lum. calorimeters
- Many of our design innovations have been incorporated in the CALICE gen. II design
 - Integrated electronics, power pulsing, small gaps, sub-cm transverse segmentation, etc
- This arrangement has been beneficial for developing a viable ILC ECal design with essentially no redundancy (so far)

Si-W (project 6.5) Status Summary

- KPiX readout chip
 - Currently studying v4 prototype (2x32 channels)
 - Submit v5 in next few weeks (4x32 channels)
 - Improved biasing of MOS capacitors; new poser bus for comparators
 - Optimized shaper time constants
 - Expect to submit 1024-channel KPiX in late Fall or Winter
- Silicon sensors
 - v2 prototype submitted to industry (40 sensors)
 - Schedule funding limited hope to acquire sensors Fall-Winter
- Readout flex cable short version for first module OK
- Bump bonding first trials (UC Davis) just starting
- → Combine the above: a full-depth, single-wafer wide module
- → Test in a beam: (1) electrons (2008); (2) hadrons with HCal

The R&D leading to an "ILC-ready" Si-W ECal technology is progressing well

Extra stuff...

Future Si-W Development Milestones

- I. Connect (bump bond) prototype KPiX to prototype detector with associated readout cables, etc
 - Would benefit from test beam (SLAC?) 2007
 - A "technical" test
- II. Fabricate a full-depth ECal module with detectors * and KPiX-1024 readout * – functionally ≈equivalent to the real detector
 - Determine EM response in test beam 2008
 - Ideally a clean 1-30 GeV electron beam (SLAC??)
- III. Test with an HCal module in hadron test beam (FNAL?) 2008-?
 - Test/calibrate the hadron shower simulations; measure response
- IV. Pre-assembly tests of actual ECal modules in beam >2010
- V. Develop mechanical design, 2008→

R&D Milestones and test beams

- I. Connect (bump bond) prototype KPiX to prototype detector with associated readout cables, etc
 - Would benefit from test beam (SLAC?) 2007
 - A "technical" test
- II. Fabricate a full-depth ECal module with detectors and KPiX-1024 readout functionally ≈equivalent to the real detector
 - Determine EM response in test beam late 2007-8
 - Ideally a clean 1-30 GeV electron beam (SLAC?)
- III. Test with an HCal module in a hadron beam (FNAL?) 2008-?
 - Test/calibrate the hadron shower simulations; measure response
- IV. Pre-assembly tests of actual ECal modules in beam >2010-?

Longitudinal Sampling

esolution (%)

resolution (%)

Compare two tungsten configurations:

- 30 layers x 5/7 X₀
- $(20 \times 5/7 \times_0)$ + $(10 \times 10/7 \times_0)$

- Resolution is 17% / \sqrt{E} , nearly the same for low energy (photons in jets)
- Better for the 20+10 config.
 at the highest energies
 (leakage) ⇒ adopt as baseline

Electronics requirements

- Signals
 - <2000 e noise</p>
 - Require MIPs with S/N > 7
 - Large dynamic range: Max. signal is ≈2500 MIPs (for 5mm pixels)
- Capacitance
 - Pixels: 5.7 pF
 - Traces: ~0.8 pF per pixel crossing
 - Crosstalk: 0.8 pF/Gain x Cin < 1%</p>
- Resistance (traces)
 - 300 ohm max
- Power
 - If < 40 mW/wafer ⇒ allows passive cooling (as long as power is cycled off between bunch trains)
- Provide fully digitized, zero suppressed outputs of charge and bx time on one ASIC for every wafer.

Use DC-coupled detectors: only two metal layers (cost)

Response of Detectors to 60KeV Gamma's from Am²⁴¹

Possible ~1% wafer-wafer calibration?

Noise is consistent with expectation from capacitance and series resistance

Backup Slide

Summary on potential of π^0 mass-constraint in hadronic events ($\sqrt{s=m_7}$)

1. Perfect pairing

ignormant algorithm 1 00

ECAL Energy Resolution (%)	No fit	Fit (0.5 mrad)	Fit (2 mrad)	Fit (8 mrad)
8.0	8.0	4.9	5.8	6.8
16.0	16.0	9.4	10.7	12.7
32.0	32.0	18.3	19.9	23.4

Table 1: Average normalized fractional energy resolution (%) on the total prompt π^0 energy in light-quark Z events with and without kinematic fitting for different assumptions on the ECAL energy resolution stochastic term, and the di-photon opening angle resolution assuming perfect pairing in the kinematic fit. Errors are less than 0.1%. (uses fit to the error distribution from the fit)

Using fitted σ of	2. Assignment algorithm 1.99					
	7.9	6.0	6.8	7.5		
deviation on same	15.7	<i>12.0</i>	13.1	14.8		
10k events	31.0	24.9	26.1	28.7		