


Introduction

& The SiPM response is non-linear and depends on operating voltage
(V-V,4) and temperature = SiPMs need monitoring

€ In the AHCAL physics prototype we use an LED-based monitoring
system that can measure the full SiPM response function in each
channel (one LED monitored by a PIN feeds 18 scintillator tiles)

& Since the present monitoring system is rather elaborate, one may
ask if the system can be simplified in a full ILC calorimeter
without sacrificing stable performance (<1%)?

& This requires a characterization of the SiPM response curves
that can be determined with a few reference measurements

& During the 2006 testbeam program we took 4 runs recording the
full SiPM response

& We are analyzing this data to extract essential characteristics
of the SiPM response curves to address above question
~>. % shape, saturation point, ...

£ [
S e 2
N G. Eiaen. Paris. 08.10.2007



Analysis Procedure

& Use run type ahcPMVcalibScan and extract SiPM & PIN diode
values from LCIO files (pedestal events are now included)

Gain correction and intercalibration is taken into account here

Pedestal subtraction is based on pedestal events from beam runs
that weretaken shortly before or after Vcalib run

& We calculate average of SiPM & PIN for each Vcalib value & plot
SiPM vs PIN correlation (= "uncorrected” SiPM response curve)

& Rescale PIN values to force initial slope to be one and start at a
common origin (= "corrected” SiPM response curve)

& Small negative sipm/pin values occurring for low Vcalib values
are set to (0,0) in fits to different models

& Compare 4 runs from August & October for all modules 3-15
C‘gﬁ (we have left out modules 1 &2)
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Saturation Curves for Module 13, 5-6

& Compare 4 runs from August & October

[SGTuratjon curve afterj pec‘lestall spl:gtmq‘l‘iprg, 'PINI & gain correction
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Saturation Curves for Module 5, 5-6

& Compare 4 runs from August & October

Saturation curve after pedestal subtraction, PIN & gain correction
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Saturation curve after adjustment to common origin with slope one
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ifference between maximum
and minimum A value of SiPM

response endpoint for the 4 runs

Distribution peaks at ~10 pixels
but has long high-side tail
=> need to understand this

FWHM ~ +13 -10 pixels

to average of 4 endpoint values
Peaks is ~1%

FWHM is ~1%, but distribution
has very long tail on high side

The long tails need to be

" * understood and possibly reduced
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Spread of Endpoints in Different Runs

Spread of endpoints from 4 runs
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pread of SiPM Response Curve Endpoints

'Measured endpoints in saturation curve
T T T [ T T [ T T T [ T T T

€ This represents the variation |
in SiPM responses 1eof- F WHM~200 pixels =

& The distribution peaks near mf: :
~900 pixels & has a tail on 100 _ =
low-side sof- JJU E

& The FWHM is ~200 pixels 0 : | 2
=2>c ~ 85 pixels o A
The SiPMs have 1024 pixels from run 300723 %

We need to understand the ~100 pixel shift and the large spread
(is pedestal subtraction too big?)

& Since the measured endpoint may not correspond to the true
saturation value (non-zero slope at endpoint), we are exploring
C‘g}i different fitting models
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Parameterize SiPM Response Functions

€ The idea is to fit SiPM response to a function and extract the
saturation value from the fit

& We have started with 3 model distributions
® 1. AX=C (1 — exp(—ax)] => zero slope at endpoint

® 2. f(x)= 6'(2 — exp(—ax) — exp(—bx)]
® 3. f(x)= C'(Z — exp(—ax) — exp(—bxz)]

& In first model C yields saturation value if slope is ~ zero at EP,
otherwise saturation is underestimated

& To extract saturation value for latter two models is complicated
as it varies between C and 2C depending on slope (not corrected)

We are further looking into more refined functions
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Fit Saturation Curves of Module 5,5-6

| Module 5, chip 5, channel 6 | Module 5, chip 5, channel 6 |
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Fit Saturation Curves of Module 13,5-6

|_Module 13, chip 5, channel 6 | | Module 13, chip 5, channel 6 |
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it Saturation Curves of Module 14,5-6

| Module 14, chip 5, channel 6 | | Module 14, chip 5, channel 6 |
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Fit Results for C

:f(x) =C (1 - exp(—ax)];

Distributions of measured :
endpoints and endpoints from 8,50 E
fit model 1 (one exponential) £ £rzof P
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Conclusion and Outlook

The procedure of adjusting SiPM response functions to common
origin with slope one after individual gain correction looks
promising (=procedure needs fine-tuning)

Measured endpoint distribution and fit result from 1-exponential
show reasonable agreement for saturation, though measured
endpoints are shifted up by ~12 pixels wrt fitted endpoint

Peaks of distributions are ~100 pixels lower than #SiPM pixels,
and spread (FWHM ~ 100 pixels) is rather large = needs further
exploration

We need to understand non-vanishing slopes at endpoint, improve
fit model to deal with different shapes near endpoint, and
determine the %2 to evaluate the fit quality

We will look at saturation curves in 2007 runs (increase statistics)

We will try to extract parameters from one run, apply them to

to data of another run and see if we can reproduce the shape 13
G. Eiaen. Paris. 08.10.2007
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Saturation Curves for Module 14, 5-6

& Compare 4 runs from August & October

LSaturation 'curl'velafj'erl pedestal sqbtr]'acj'iorll, PIN &Igain correction
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Saturation Curves for Module 6,5-6
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Saturation Curves for Module 15, 5-6

| Module 15, chip 5, channel 6 | |_Module 15, chip 5, channel 6 |
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Results for a

In the distribution of the
exponential fit, a peaks at~1.2 .
and FWHM is ~0.4

For distribution of the 2-
exponential fit, a peak is
shifted to ~1.6 and FWHM is
~0.6

For distribution of exponential

‘f(x)=6'(1—exp(—ax)]‘ S

L (== T S S T N T N T el

5
E

plus gaussian fit, a peaks at

~1.4 and FWHM is ~0.45

We need to look at
correlations among the
parameters

T
f(x) = C'(Z — exp(—ax) — exp(-bx*)
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Fit Results for b

f(x) = C'(Z — exp(-ax) — exp(—bx)]
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description by one-exponential model (see spike at zero), most

probable value is ~0.05

In exponential plus gaussian model peak is ~0.01, distribution is

narrow with FWHM at ~0.01
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