VALSIM progress report

J. Apostolakis, G. Folger, V.Grichine, A. Howard, V.Ivantchenko, M. Kossov, A. Ribon, V. Uzinskiy Aug 27, 2007

Outline

- Introduction
- Model improvements
- Geant4 Releases
 - Quasi-elastic channel
 - Revised FTF model
- Validation
 - Cross sections
 - Comparisons with TARC experiment data
- Open Issues

Model improvements

- Identified diffraction and quasi-elastic channels as key channels
 - Influence shower shape significantly
 - Need for validation
 - String models deficient in modeling these
- Improvements undertaken
 - FTF model revised (V. Uzinskiy)
 - Separate Quasi-elastic channel created for our QGS model (G. Folger, M. Kossov)
 - Improved elastic scattering: cross-sections, tdistribution from fits to data (M. Kossov)

Quasi-elastic and inelastic

- To model Quasi-elastic interactions
 - Calculated ratio of cross-sections
 - Quasi-elastic / Inelastic
 - Split inelastic cross-section of QGS
 - deep inelastic for our QGS model
 - Quasi-elastic for new model (M.K.)

CHIPS QuasiFree/Inelastic Ratio for different $\sigma_{tot}(hN)$

Revision of Fritiof model

V. Uzhinskiy

In FTF model probabilities of intra-nuclear collisions were taken from QGSM. In the original FRITIOF model - from Glauber approximation

Comparison with exp. data

There is a problem with description of rapidity distributions

Improvement of Elastic Scattering

M. Kossov

Improvement of Elastic Scattering

Physics lists and the Quasi-elastic channel

- The new option splits the inelastic cross-section
 - between the Quark Gluon String (QGS) model and a quasi-elastic interaction
- It is activated in QGS physics lists:
 - QGSP, QGSC, QGSP_BERT, QGSP_BIC
 - QGSP_EMV, QGSP_BERT_EMV
 - QGSP_BERT_HP, QGSP_BIC_HP (to be verified)
- Except in QGSP_NQE, QGSP_BERT_NQE where it is inactive
 - New temporary list, created to offer this possibility.
- Not relevant to FTFx, LHEP physics lists
 - They do not use QGS model.

Cross sections

V. Grichine

- Review and validation of G4 cross-sections
 - Inelastic hadron-nuclear
 - Total hadron-nuclear
 - Note: In Geant4 the elastic and inelastic are separate
 - The totals are the sums elastic & inelastic, as used in different physics lists
- As a result, created two new cross section classes:
 - Barashenkov cross-sections for nucleons
 - Simplified 'Glauber-Gribov' model for scaling E>10 GeV

The TARC Experiment

- Neutron Driven Nuclear Transmutation by Adiabatic Resonance Crossing (Cern 96-97)
- 2.5 or 3.5 GeV/c proton beam.
- 334 tons of Pb in cylindrical
 3.3m x 3.3m x 3m block.
- The lead is 99.99% pure.
- Beam enters through a 77.2mm diameter blind hole, 1.2m long.
- 12 sample holes are located inside the volume to measure capture cross-sections on some isotopes.

Fluence Bertini cascade

Different methods to measure:

- Yellow: sphere
- Red: cylinder
- Black: Full 4π/cosθ

5000 Events

BERTINI 2.5 GeV/c

Longitudinal Shower Shape Profiles of Iron-Scintillator Calorimeter (simplified ATLAS TileCal)A. Ribon

The shower (10 λ) becomes a bit longer due to quasi-elastic processes

18th April 2007

Alexander Howard, CERN — Validation of Neutrons in Geant4 Using TARC Data

Lateral Shower Profiles (A. Ribon)

For the lateral shower profile		
	8.2.p01	9.0
f_L1	55.7 +/- 0.3%	54.5%
f_L2	33.6 +/- 0.2%	34.0%
f_L3	8.9 +/- 0.1%	9.5%
f_L4	1.8 +/- 0.05%	2.0%

(the errors in parenthesis are statistical, for samples of 5000 events):

- f_L1 : fraction of the visible energy in the first quarter of the calorimeter (corresponding to 2.5 lambdas of Fe);
- f_L2 : fraction of the visible energy in the second quarter;
- f_L3 : fraction of the visible energy in the third quarter;
- f_L4 : fraction of the visible energy in the fourth quarter.

The calorimeter is a cylinder, 10 (Fe) \land long, and 10 \land in diameter.)

Summary

- Improvements being release in Geant4 8.3 (May 2007):
 - Revised FTF model
 - Quasi-elastic channel coupled with QGS model
- Already released
 - New elastic scattering process (8.1, 8.2)
- Cross-section review
- Validation of neutron transport in TARC

Backup slides

Deliverable

- VALSIM month 18 milestone (June 2007)
 - "First release of improved version of the hadronic processes and physics lists in GEANT4"
- Improvements identified and undertaken:
 - Issues identifies as a result of validation
 - Revised FTF model, improving diffraction
 - New modeling of quasi-elastic channel

Geant4 Releases

- The upcoming minor release Geant4 8.3 includes
 - the revised FTF model (in place of the original)
 - Option to split the inelastic cross-section between the QGS model and a quasi-elastic interaction
 - Activated in QGSx family of Physics lists (see next page)
 - Fix to Copper cross-section
 - which was reduced in 7.0 (tbv) by 4% compared to data
- It is planned for public release on 9th May 2007
- Geant4 9.0 is the scheduled release of June.

Releases and Elastic improvement

- Improved Elastic scattering
 - Most important for Hydrogen
 - Most relevant for light targets, but all improved
- The new 'QElastic' (M. Kossov)
 - As a process available for all elements in 8.2
 - Used in QGSC and QGSP_QEL
- Intermediate solution (since Geant4 8.1)
 - HadronElastic (V. Ivantchenko) used QElastic for Hydrogen
 - Used in QGSx , FTFx physics lists in 8.1-8.3

CHIPS: new Elastic

CHIPS improvement of pPb elastic scattering

CHIPS: new Quasi-Elastic

CHIPS method for quasi-elastic scattering

Calculate and approximate R=QE/Inelastic \Box Probability of interaction: $\sigma_{in} = \int 1 - e^{-\sigma \cdot T(b)} d^2 b$, $\sigma = \sigma^{tot}(hN)$ \Box Probability to interact once: $\sigma_{OF} = \int \sigma \cdot T(b) \cdot e^{-\sigma \cdot T(b)} d^2 b$ • Precize approximation of $\sigma^{el}(hN)$ & $\sigma^{tot}(hN)$ nn/pp and np/pn interactions 8 □ N-N and Hyperon-N interactions isotopic $\Box \pi^{-} p / \pi^{+} n$ and $\pi^{+} p / \pi^{-} n$ interactions groups □ K⁻N/K⁰N and K⁺N/K⁰N interactions

Calculation of QElastic/In & QFree/In ratios

CHIPS QuasiFree/Inelastic Ratio for different $\sigma_{tot}(hN)$

CHIPS improvement of hadron-nucleon total cross-section

TARC simulation

Neutron Energy-Time Correlation

- A first test of neutron transportation in Geant4 is to look at energy-time correlation
- This relies heavily on the high precision neutron_hp model for neutrons < 20 MeV
- Neutron energy and time are stored for the flux through a given radial shell
- Reasonable agreement with expectation, although the low energy population is quite different between physics list (as expected)

Fluence Binary cascade

Fluence Bertini cascade

Ratio of fluence G4/Data – Bertini

- Ratio of 4π/cosθ: Data
- Two-sets of data
- Approximately 50-60% overestimated
- Dominated by systematic errors of experiment

Ratio of fluence G4/Data – Binary

- Ratio of 4π/cosθ: Data
- Two-sets of data
- Approximately agrees (~10% under-estimated)
- Dominated by systematic errors of experiment

Neutron Energy /eV

Alexander Howard, CERN — Validation of Neutrons in Geant4 Using TARC Data

Other cross sections

• In addition created and validated

Cross sections for elastic scattering of p, n

Released H, D, He in G4 8.1 (June 2006) and other. Kossov elements in G4 8.2 (December 2006)

Final state t-distribution also fitted to data.