

Status Report on ADC developments @ LPC

ILC Group

INSTITUT NATIONAL DE PHYSIQUE NUCLÉAIRE ET DE PHYSIQUE DES PARTICULES

13/09/2007

Manen @ Calice meeting Prague 2007

1

Ecal VFE ADC : requirements

- Requirements for ADC
 - Precision 10 12 bits
 - Ultra low power, 25µW per channel
 - Compactness, electronics embedded in detector/
- Three main developments @ LPC
 - Wilkinson ADC 12 bits easy to implement in SKIROC but too slow for ILC
 - Pipeline ADC 10 bits tested and measured
 - New design : cyclic and pipelined ADC 12 bits
 - Building blocks for 3V power supply

Ultra-low POWER

KEY issue (*C. de la Taille*)

9/13/2007

Consumption for 12 bits Wilkinson ADC

- Dynamic consumption : 3 mW
- Conversion time: 80 us @ 50MHz
- Assuming:
 - 128 channels per VFE chip
 - 1 ADC per channel so 128 ADC per chip
 - 5 events max per channel (memory depth)
 - With power cycling, the integrated consumption per channel of the A/D conversion can be estimated by:

 $\frac{Pw \times Tconv \times Mem.}{Time_cycle} = \frac{3mW \times 80\mu s \times 5}{200ms} = 6.2 \,\mu\text{W/ch}$

withPw:power cons. of one channelTconv:time for one conversionMem:memory depth of one channelTime_cycle:time between two trains

The ON-setting time effects can be neglected.

9/13/2007

Performance from simulation of 12 bits Wilkinson ADC

- Resolution: 12 bits
- Consumption: 3 mW
- Conversion time: 80 µs (@ 50MHz)
- Current source (ramp generator):
 - Input dynamic signal: 1V Common Mode
 - 2V differential ramp generator
 - T° sensitivity : 40 ppm/°C max (20 to 50°C)
 - Power supply sensitivity: 5 ppm/V (±50 mV)

Pipeline ADC architecture

- Linearity mainly affected by the precision of the amplifier gain
- 1.5 bit per stage architecture
- Comparator offset tolerated ± 250mV for 2V range

10-bits Pipeline 5V ADC

Characteristics:

- Technology: Austriamicrosystems CMOS 0.35µm
- Power supply: 5V (digital: 2.5V)
- Clock (sampling) frequency: 4 MHz (MS/s)
- 10 bits → 10 stages
- 1.5bit/stage and differential architecture
- Die area: 1.2 mm²

Consumption for 10 bits pipeline ADC

- Dynamic consumption : 35 mW
- Conversion time: 250ns @ 4MHz
- Assuming:
 - 128 channels per VFE chip
 - 1 ADC per chip
 - 5 events max per channel (memory depth)
 - With power cycling, the integrated consumption per channel of the A/D conversion can be estimated by:

$Pw \times Tconv \times Mem.$	$35mW \times 250ns \times 5$	= 0.22 µW/ch
Time_cycle	200 <i>ms</i>	

withPw:power cons. of one channelTconv:time for one conversionMem:memory depth of one channelTime_cycle:time between two trains

The ON-setting time and pipeline latency effects can be neglected.

9/13/2007

Test Bench:

- Generic board for ADC tests
- Analogue signal generator: DAC 16 bits (DAC8830)
- PC/LabView Slow Control through USB interface
- Data processing with Scilab package

Designed by Roméo Bonnefoy

- Performance <u>measured</u>:
 - Resolution: 10 bits

9/13/2007

- Consumption: 35 mW
- Conversion time: 0.25 µs (@ 4MHz)

12 bits – 3V buildings blocks developments

- Objectives :
 - Design a 12 bits pipeline or cyclic ADC
 - Gain 2 accuracy multiply by 4
 - 10 bits ADC accuracy is 1/1000
 - 12 bits ADC accuracy is 1/4000
- Two chips designed to characterize two main elements
 - Comparator
 - Gain 2 amplifier

Comparator test results for 12 bits ADC

<u>Characteristics:</u>

- Technology: CMOS 0.35µm
- Power supply: 3V
- Clock frequency: 10 MHz
- Differential architecture
- Consumption 68uA
- 7 chips tested

Average Sensitivity: 1.6 mV Average Offset : 4.2 mV Fullfit 12 bits precision requirements

SENSITIVITY VARIATION FOR 10 MHZ FREQUENCY COMPARATOR OFFSET VARIATION FOR 10 MHZ FREQUENCY COMPARATOR 15 3.0 2.5 . 10 2.0 Ж SENSITIVITY (mV) FSET(mV) Ж 0.5 0 Ж 0.0 -0.5 -5 0 2 4 6 7 0 2 5 CHIP CHIP 9/13/2007 13 Manen @ Calice meeting Prague 2007

Gain 2 amplifier for 12 bits ADC

- Characteristics:
 - Technology: CMOS 0.35µm AMS
 - Power supply: 3V
 - Differential architecture
 - Die area 11mm2
 - 84 pins

- Calice_07_07 in july 2007 july 2007
 - 3V Gain 2 amplifiers with different layout structures capable to reach 12 bits
 - One ADC stage 12 bits 3V
 - Integrated shaper with analog memory

- 12 bits Wilkinson ADC
 - Under test
 - Compactness, 128 wilkinson ADC per chip, die area of (128*0.12)mm2 for 128 ch.
 - Consumption, 6.2μ W/ch, $\approx 30\%$ total power of one channel
- 10 bits pipeline ADC
 - Precision, INL: -0.70/+0.85 LSB , DNL: -0.46/+0.56 LSB, Noise: <0.5 LSB</p>
 - Compactness, one pipeline ADC per chip, die area of 1.2mm² for 128 ch.
 - Consumption, 0.22μ W/ch, $\approx 1\%$ total power of one channel
- Under study (the best candidate): 12 bits cyclic ADC
 - Compactness, one ADC per chip around 0.2mm² for 128ch
 - Consumption, 0.22μ W/ch , $\approx 1\%$ total power of one channel
 - Possibility to have 1 ADC per channel