ReadOut & DAQ on European DHCAL

Clément JAUFFRET LLR, Ecole Polytechnique - IN2P3 / CNRS

Calice Meeting, Prague - 12/09/2007

Introduction

- DHCAL Electronics Objectives:
- DHCAL1 board : 4 LAL HardROC1 64 ch. ASICs over RPC.

 Code for onboard FPGA & PC/[next hierarchical board] by USB (for the moment) → DIF (Detector InterFace specific)

- Handle ASICs parameters loading and checking, sequencing, data readout and sending out of detector.
- Initially made for and still compatible with 1 chip board
- Make complete digital acquisition chain.
- Be compatible with analog DAQ (from wich we have to receive trigger and time counter reset)

Firmware Developpement

• Initialize shared memory and board

US8 Ö≓

- Initialize shared memory and board
- Load configuration in ASIC

- Initialize shared memory and board
- Load configuration in ASIC
- Check configuration

1158

- Initialize shared memory and board
- Load configuration in ASIC
- Check configuration
- Start [& Stop Acq]

00 ns

+ Trigger counter increase

1198

Command

- Initialize shared memory and board
- Load configuration in ASIC
- Check configuration
- Start [& Stop Acq] + Trigger counter increase

oso ⊙≓

- Initialize shared memory and board
- Load configuration in ASIC
- Check configuration
- Start [& Stop Acq] + Trigger counter increase
- Start readout store in RAM
 ASICs output frames

Counts@(1MHz/8) ASICs output word number

- Initialize shared memory and board
- Load configuration in ASIC
- Check configuration
- Start [& Stop Acq] + Trigger counter increase
- Start readout store in RAM
 ASICs output frames

 Upload Data to PC: USB pass through way

> number to get and then words themselves

> > IR

Clément JAUFFRET - LLR, Ecole Polytechnique Calice Meeting, Prague - 12/09/2007

1198

- Initialize shared memory and board
- Load configuration in ASIC
- Check configuration
- Start [& Stop Acq] + Trigger counter increase
- Start readout
- Upload Data to PC : USB pass through way
- Check CRC and Write Data to disk

Scheduled by software

Firmware Developpement

- Vhdl Package to set parameters depending on board & ASIC
- Compilator also work better with fixed parameters. there was solutions like parameter sizes depending on parameters loaded at runtime, structure much better optimized
- Make not use of either digital nor analog test points. Useful to debug ASICs but error or failure could be localized even without these test points

Software Developpement Library

Access directly LAL hardROC chip from PC
 USB: well understand functioning & timing constraints to adapt it to our situation

- Try to evaluate parameters that impact on latency
- Make use of special characters of usb norm for functions like send directly to minimize command throughput
- Add timeouts as in firmware to be prepared to be faced with stucked access

Software Developpement Library

- Protocol over USB: 2 types of access
- Registers : fixed length accesses

32 bits, 10 address bits

Allow Observation & Control

e.g. see status, change of functioning mode

• Commands : make use of block transfers

detector to acquisition distances \implies non negligeable delays Minimise exchange nbr, make use of Protocole handling data transfer

• Configuration Files (csv) \implies simple access to parameters

Software Developpement Library

- Parameters make code reusable for others calorimeters because of use of LAL ASIC : ASIC nbr, Slow Ctl & Data Frames length
- Parameters fixed at compilation time to allow better optimization
- Vhdl + C Code soon available on the web for people who would wish to familiarize themselves with it

Software Developpement Acquisition

- Command line or stream socket connection would allow to be piloted by analog DAQ software (adaptation kindly organized by P. Daunsey)
- More boards :
 - Identification by Serial number loaded in USB EEPROM
 - each board locked on a connection, differents tasks managed by threads (pthreads). Allow to have exactly same code, scheduling and dealing with possible conflicts

Software Developpement Acquisition

- Code made to be portable under:
 - Windows NT > 4
 - Cygwin NT 5.1
 - Linux (RHEL 3.0 for the moment but more possible)
- Because use of standard C libraries, POSIX threads, readline
- Parts with conditionnal compilation: FTDI D2XX USB Library, UNIX sockets & Winsock2
- Documentation available

Endpoints and actual State of Tests

- Tests on cosmic bench soon at Lyon IPNL. More to be done...
- Still to do before test beams to be possible (End of October?) :
 - Socket interface with analog DAQ to test and improve
 - Make satisfying use of real trigger and other time critical signals

Conclusion

- Even if more tests are still necessary, results encouraging
- Software tested and optimized
- Acquisition chain of 2nd generation DAQ type almost finalized
- gives interesting informations for further developpements

