MONALISA Update

David Urner ATF2 Meeting Dec 19 2007

Monitoring Alignment & Stabilisation with high Accuracy

Armin Reichold

David Urner

Paul Coe

Matthew Warden

MONALISA at ATF2

 MONALISA: measures 6D position of two objects separated by several meters with a precision of nanometres

– Using interferometers

- ATF: Objects are QD0 and Shintake monitor
- At Oxford we have developed a distance meter with
 - better than 1 micron absolute distance resolution
 - Nanometre relative distance resolution
- Need now to develop compact straightness monitor to measure 6D position

CSM (Compact Straightness Monitor)

- 6D position transferred from left to right
 - breaking of symmetries is important
- Preliminary simulation results of CSM Resolution:
 - σ_y :10nm
 - distance meter resolution: 1nm
 - Positional change of optics components with respect to each other: 1nm That's the challenge.

Frequency stabilisation

Frequency standard: ⁸⁷Rb D₂ line at 780 nm

Simplified Schematic:

- Need 20 kHz stability for 1nm over distances of 10m.
- NPL done ~kHz.

- Fixed frequency laser (FFI)
- Compact Launch: 25x25x15mm
- Test shown here with moving mirror
- First stationary mirror test :
 - resolution 5 nm demonstrated
 - to be improved with vaccuum
 - and laser frequency stabilisation
 - temperature and pressure dependence look reasonable

Multi-fibre read out (compact launch) FSI:Frequency Scanning Interferometry (OPD 400mm)

LiCAS Reference Interferometers

- Frequency Scanning Interferometry
 - long line reference interferometers show world leading resolution
 - Using single non-stepped readout

Dual Laser FSI

- Known Fundamental limitation on Resolution: Drift errors during scan (~1s)
- Solution: Use two lasers scanning in opposite direction.
 - Second laser being purchased as I speak.
 - Some test data taken during tryout.
- Modulate two lasers with different frequencies demodulate with electronics
- Use different tuning speeds resulting in different FSI frequencies

Opposite tuning Lasers

- Using two evacuated LiCAS reference interferometers: 6.25m OPD.
 - Separation easy
 - Resolution improves

Progress

- Hardware
 - Built novel Interferometer designs
 - Pioneered new phase measurement techniques
 - Vacuum vessel to demonstrate nm precision currently being vacuum tested
 - Tested compact launch optics
- Software
 - Developed novel phase analysis technique
 - Collaborated with LiCAS on OO analysis package
 - Developed binary file format for data handling
 - users MonAliSA, LiCAS and ATLAS (FSI)...
 - Available in Java, C and LabVIEW

Shintake Monitor and Optical Table for Final Doublet Support so far

- Find MONLISA support structure:
 - Not attached to present support structures
 - Rigid to not induce unwanted vibration
 - Fit into overall footprint

Conclusion

- CSM design started
- Vacuum test vessel ready.
- Promising results on both FFI and FSI front
- Frequency Stabilization Concept finished
- Converging towards practical mounting structure.