Update on Tuning and Feedback Studies for ATF2 Glen White SLAC Nov. 20 2007

Overview

Tuning simulation updates

- Review of tuning simulation.
- Effect of removing 3 quad movers from alignment and tuning simulation.
- Check of mover range.

Feedback simulation studies

- Impact of 'fast' jitter sources.
- Long-timescale performance with ground-motion drifts.

ATF2 Final Focus System Test

Optics v3.5, 1 July 2006

Tuning Procedure Overview

- Apply installation errors.
- Use EXT correctors + BPMs (EXT FB) to get orbit through EXT.
- Use FFS FB to get beam through FFS.
- Correct Dy/Dy' in EXT using skew-quad knobs.
- Correct coupling in EXT using coupling correction system.
- Use FFS FB for launch into FFS.
- FFS Quad BPM alignment using quad shunting with movers.
- FFS Quad mover-based BBA.
- FFS Sext BPM alignment using Sext movers and downstream BPMs.
- Sextupole tuning knobs to get final spot size
 - Vertical IP dispersion and Waist
 - <x'y> coupling
 - Higher order terms collectively through Sext rolls + dK.
- Also use EXT skew-quads to tune other coupling terms.

Static Error Parameters

- Errors are normally distributed with mean=ref. orbit and quoted standard deviations.
- EXT BPM alignment not directly modeled yet, assume 10um quad-bpm alignment here.
- Model for SM measurement: mean spot size from 90 consecutive pulses +/- 2nm RMS error.
- Poisson-calculated multipole errors now added to FFS dipoles.

	· · · · · · · · · · · · · · · · · · ·
x/y/z alignment errors	200 um
Quad, Sext / Bend roll alignment	300 urad
Initial BPM-magnet field center alignment	30 um
dB/B for Quad, Sexts	1e-4 syst. + 1e- 4 random
Mover step size (x & y)	50 nm
BPM resolutions	100 nm / 2um
Power supply resolution (FFS/EXT magnets)	16/11 - bit
Shintake Monitor Resolution	2 n m

Tuning Results

- •100 seeds simulated
- •90 pulses per measurement•1.56 Hz
- •Take best spot-size seen over 8 days as result for individual seed.

Fully dynamic tuning simulation (2nm IP waist measurement resolution).
Iterate tuning knobs.

Tuning Results

- Best achieved vertical waist size for 100 seeds (left)
- Time taken to converge on best waist size, and time to converge within 10% of best waist size (right)

Effect of Removing 3 Quad Movers

- Final tuned spot-size results unchanged
- Problem with size of vertical quad moves

•

- More optimal movers to remove than first 3?
 - Reduce BPM weighting in BBA solution
 - Study effect on tuning performance

Magnet movers in tuning code

- Include mover limits in tuning algorithms
 - Stop simulation if mover attempts to break limit
- 100 seeds 28 failed due to mover limits
 - 14 during initial steering
 - 10 during BPM-quad alignment
 - 4 during the final sextupole tuning
- The 4% failure for sext tuning may ignored as negligible

- These could be fixed by realigning the machine.

- 24% failure during initial steering and alignment <u>not</u> negligible
 - Must alter algorithms
 - Tighter constraints on magnet motion?

Feedback Studies

Feedback Model

- Use all available correctors and BPM's in EXT
 - 10 correctors in x, 11 in y
 - 23 BPMs
- Use 2 corrector/BPM pairs at start of FFS in non-dispersive region
- Feedback weights: o.1 (FFS) o.01 (EXT)

Study Jitter Effects

- Fast = 90 pulses
 - Study effects of fast jitter on beam size measurement
 - Orbit jitter => beam size jitter + beam position jitter -> beam size jitter through Shintake monitor measurement process
 - First effort towards integrating a Shintake Monitor simulation
- Slow = hours -> 2 weeks
 - Ground motion causes slow drifts at IP and throughout machine
 - Need to periodically retune to restore beam size

ATF2 pulse-to-pulse feedback devices (v3.7)

Oct 9, 2007

July 18,2007

'Nominal' Jitter Parameters

- 0.1 sigma x,x',y,y' RMS ring extraction jitter
 - 13 um/2.8 urad (x/x') 0.6 um/0.4 urad (y/y')
- 1e-4 dE/E error
- 10 nm magnet vibration
- 1e-4 strength errors pulse-pulse on corrector magnets
- 100 nm BPM resolution
- ATF fitted GM model
- Simulation performed with 100 random seeds

IP Motion

- 20,000 pulses @ 1.56 Hz (1 seed)
- IP vertical position drifts around on scales of a few 100 nm an hour.
- Slow enough that this can be 'de-trended' using Shintake Monitor as IP position monitor.

RMS IP Drift

- 20,000 pulses, 100 seeds
- RMS IP y position shown as a function of time without feedback (left) and with feedback (right)

Beam Size Growth

- With feedbacks on, y beam size at IP as a function of time
- Mean of 100 seeds shown
- Growth rate ~ 0.5 nm per hour

Long – Timescale Performance

At each point, none, linear (waist, dispersion and coupling) and full tuning knobs (include sextupole strength and tilt scans) applied. For blue, red and black respectively.

- Vertical IP beam size over 2 week period
- Mean and +/- 1 sigma RMS from 100 seeds shown at each point

Sources of Fast Jitter

Investigate relative importance of different fast jitter sources

- Shintake monitor simulation **not** used here-just looking at jitter sources
 - Effect of jitter sources on beam size and position jitter during 90 pulses measurement is taken over.
 - 100 random seeds of 90 pulses used for each measurement, starting from a tuned machine.
 - Use Gaussian fit method for beam size measurement.

Jitter sources considered and ranges of jitter simulated

- Following sources on top of 1.56 Hz GM
- Ring extraction jitter (0:0.1:1.0) sigma x,x',y,y'
- Energy jitter (0:2e-4:2e-3) dE/E
- Magnet vibration (0:5:50) nm
- Corrector errors (0:1e-4:1e-3) dB/B
- BPM resolution (0:200:2000) nm

Ring Extraction Jitter

- Mean and RMS IP y waist size (left) and position jitter (right)
- 100 seeds, 90 consecutive pulses tracked for each seed

Energy Jitter

- Mean and RMS IP y waist size (left) and position jitter (right)
- 100 seeds, 90 consecutive pulses tracked for each seed

Magnet Jitter

- Mean and RMS IP y waist size (left) and position jitter (right)
- 100 seeds, 90 consecutive pulses tracked for each seed

Corrector Field Jitter

- Mean and RMS IP y waist size (left) and position jitter (right)
- 100 seeds, 90 consecutive pulses tracked for each seed

BPM Resolution

- Mean and RMS IP y waist size (left) and position jitter (right)
- 100 seeds, 90 consecutive pulses tracked for each seed

Fast Jitter Summary

Chart of improvements made if different jitter sources are removed
Magnet jitter is clearly dominant, all other sources do not make appreciable differences if removed.

