Fifth ATF2 Project Meeting

Permanent magnet Final Focus Quadrupole for ATF2

Y. Iwashita, T.Sugimoto, M.Ichikawa, Y.Tajima, M. Yamada Kyoto U.

Accourses Laborationy Advanced Researce Conver for Bom Science Mysinupe for Chomical Resparch Kyono University

Permanent Magnet Study Short History

2002~2005 First R&D program for FFQ

Permanent Magnet Quadrupole for Final Focus
Lens in a Linear Collider
2002 Fixed strength PMQ
2003 Adjustable PMQ (double ring)
2004 Measurement and fine tuning
2005 Higher gradient at small bore

2006~2009 Second R&D program

Development and Application of PMQ for Linear Collider and Neutron optics 2006 Half scale Model of Rapid Cycling Sextupole 2007~Adjustable PMQ (2nd model)

2008

The 20mr Variable FFQ Magnet

hole for outgoing beam

hole for incoming beam

Double Ring Structure

The double ring structure

PMQ is split into inner ring and outer ring. Only the outer ring is rotated 90° around the beam axis to vary the focal strength.

Adjustable Permanent Magnet Quadrupole

R.L. Gluckstern and R.F. Holsinger: Adjustable Strength REC Quadrupoles, IEEE Trans. Nucl. Sci., Vol. NS-30, NO. 4, August 1983, <u>http://epaper.kek.jp/p83/PDF/PAC1983_3326.PDF</u>

Optics with Permanent Q

Optics with permanent QD0 is somewhat ugly. Need to restore symmetry around the B section of $s \approx 2200m$? Optimization is not perfect

(e.g. Octupole magnets were not touched...).

Need someone to complete the design. deck file is available at SAD computer:

'/users/kuroda/sad/jlc/ilc2006b.ebds1ForPMQ'

636/5.25nm (original)

655/5.44nm

by S. Kuroda

Single Ring Train Configuration

	Eff.L [m]	R [cm]	kG	kG/m	GL [kG]
QF1	2.0	1	8	803	1605
QD0	2.2	1	-14.2	-1416	-3116
QEX1	1.1	1.5	-15.0	-1000	-1060

TOSCA calculation

Summary

Quadrupole

- Ist variable PMQ was based on double-ring structure (20mr) and evaluated.
- 2nd one (14mr) will have 5-ring-singlet structure.
 - ➡ Continuous adjustment, small stray field
- There is NO VIBRATION SOURCE in PMQ.
- The angle error of a ring is a matter of alignment; three motors may handle this, but how?
- A prototype will come in this FY (ATF2 QD0?).
- Octupole for Beam Tail Folding

