FONT @ ATF2

Javier Resta Lopez (JAI, Oxford University) for the FONT project group

> 5th ATF2 project meeting, KEK December 19-21, 2007

Introduction

- Goal: adaptation of upstream FONT system for ATF2 (see P. Burrows' presentation for R&D status)
- Beam stability by means of a combination of feed-forward (FF) correction and fast feedback (FB) stabilisation
- This system is conceived mainly for cancellation of transverse drift produced by the extraction kicker. FF + FB is most required in the vertical plane (more sensitive)
- FF+ FB systems in the ATF2 extraction line (EXT):
 - The kickers are common for FF and FB
 - A kicker in each pair has an adjacent pickup that is used for FF/FB matrix measurements
 - The FB downstream pickup pair is also used for FF residue measurement
 - Pickups (BPMs) in the ATF2 EXT are adjacent to quadrupoles

Kicker arrangement

- Single plane stripline kickers
- Locations at relatively high betatron functions (higher resolution tolerances)
- The optimal advance in a kicker pair or a pickup pair is $\pi/2$
- Suggested positions for the FONT FF/FB kickers in the extraction line. A. Kalinin schemes:

	#1	#2
	s [m]	s [m]
KY1 (for y correction)	25.35	26.96
KY2 (for y' correction)	26.96	30.14
KX1 (for x correction)	21.09	25.35
KX2 (for x' correction)	23.88	28.89

(See A. Kalinin's presentation, ATF2 Weekly Meeting, July 27, 2007, & A. Kalinin' presentation in this meeting)

Kicker parameters (Rough estimation)

Kicker angle:

$$\Delta \theta_{x,y} = \frac{2 e V}{E} \frac{L}{a}$$

The deviation at distance *d* from the kicker to a downstream BPM:

$$\Delta_{x,y} \approx \frac{2eV}{E} \frac{L}{a} d$$

V: voltage E:beam energy (1.3 GeV) L: kicker length (30 cm) a: kicker aperture

Constraint: a < 20 mm (beam line aperture)

For example: *a*=10 mm; kick of 10 μm ***** ⁽¹⁾ 0.3 kV *a*=10 mm; kick of 100 μm ***** ⁽¹⁾ 2.0 kV

Optimal phase advance positions

Scheme #1: BPMs in the lattice: P1 (ML7X) P2 (ML8X) P3 (ML9X) P4 P5

Scheme #2:

P6

BPMs in the lattice: P1X \rightarrow P3 P3X \rightarrow P5 P2Y \rightarrow P4 P4Y \rightarrow P6

Placet based model for ATF2

- Tracking of initial transverse gaussian distribution of 10000 macro-particles
 - 0.08 % energy spread
 - Nominal energy $E_0=1.3$ GeV
 - Vertical normalised nominal emittance $\gamma \epsilon_v = 3 \times 10^{-8} \text{ m}^{\odot} \text{ rad}$
 - Horizontal normalised nominal emittance $\gamma \epsilon_y$ =3 x 10⁻⁶ m@rad
- In Placet the correctors are represented as dipoles
- Study of jitter propagation, kicker response in the downstream BPMs
- Possibility to apply ground motion effects (Andrei Seryi's models) and dynamics corrections
- Steering FF/FB corrections using the FONT kickers and BPMs in progress

Phase advance between kickers

(#1 scheme)

Phase advance between kicker pairs of $\approx \pi/2$

Orbit jitters in the EXT line

Main sources: extraction kicker errors, energy jitter in DR and residual dispersion in the EXT line, ...

Estimated from measurements in ATF [ATF2 Proposal, Volume 1, pg. 41; M. Ross et al., ATF-04-05, 2004]:

- x jitter 20 µm (~20 % of the beam size)
- y jitter 2-3.5 μ m (~40 % of the beam size)
- x' jitter 1.0 mrad (? Too big!)
- y' jitter 2 µrad

Should we use this values as a reference for the ATF2 beam dynamics simulations ?

Initial jitter propagation

Example of a study of the effect of an initial vertical jitter in the range [0-7] μm and its transport to the IP

Kicker response in the downstream BPMs Vertical kickers

Checking the linearity of the kicking strength for each kicker versus the orbit response

For kicks in the range of interest ($\leq 100 \mu rad$) the transport is basically linear

Kicker response in the downstream BPMs Horizontal kickers

Checking the linearity of the kicking strength for each kicker versus the orbit response

Feed-forward correction Kicker strengths calculation

• Two BPMs (BPM1 & BPM2 separated by a distance L) in order to measure position y_{BPM1} and angle $\theta_{BPM1}=(x_{BPM2}-x_{BPM1})/L$

- Two kickers (K1 & K2) distanced by a drift space of length L_k
- Let *R^{BPM1}*K1* be the transfer matrix between BPM1 and kicker 1,

$$\begin{pmatrix} y_{K1} \\ \theta_{K1} \end{pmatrix} = R^{BPM1 \to K1} \begin{pmatrix} y_{BPM1} \\ \theta_{BPM1} \end{pmatrix}$$

$$\begin{pmatrix} Y \\ \Theta \end{pmatrix} = kick 2 \begin{pmatrix} 1 & L_k \\ 0 & 1 \end{pmatrix} kick 1 \begin{pmatrix} y_{K1} \\ \theta_{K1} \end{pmatrix}$$

- Kicker 1: $\theta_{K1} + \Delta \theta_{K1}$
- Kicker 2: $\theta_{K1} + \Delta \theta_{K1} + \Delta \theta_{K2}$

$$\begin{pmatrix} Y \\ \Theta \end{pmatrix} = \begin{pmatrix} y_{K1} + L_K (\theta_{K1} + \Delta \theta_{K1}) \\ \theta_{K1} + \Delta \theta_{K1} + \Delta \theta_{K2} \end{pmatrix}$$

Kicks for correction:

$$\left(\begin{array}{c}Y\\\Theta\end{array}\right) = \left(\begin{array}{c}0\\0\end{array}\right)$$

$$\Delta \boldsymbol{\theta}_{K1} = -\frac{\boldsymbol{y}_{K1} + \boldsymbol{L}_{K} \boldsymbol{\theta}_{K1}}{\boldsymbol{L}_{K}}$$
$$\Delta \boldsymbol{\theta}_{K2} = -(\boldsymbol{\theta}_{K1} + \Delta \boldsymbol{\theta}_{K1})$$

Residue propagation and constraints

- Let δy and $\delta \theta$ the correction errors
- If we have a similar and independent system (BPM and kicker pair) for the correction of the horizontal jitter, spurious vertical kicks can be added
- The residue propagates to the IP,

$$\begin{pmatrix} \delta y_{IP} \\ \delta \theta_{IP} \end{pmatrix} = R_{IP} \begin{pmatrix} \delta y \\ \delta \theta \end{pmatrix}$$

• The tolerable error limit:

$$\delta x_{IP} \leq 0.1 \sigma_x^*$$

$$\delta y_{IP} \leq 0.1 \sigma_y^*$$

(detailed calculation: A. Kalinin & P. N. Burrows, "Turnaround feed-forward correction at the ILC", PAC07)

Summary and ongoing studies

- Optimal locations have been chosen for the kicker and BPM pairs of the FONT FF/FB system
- The required FONT kicker performance is being studied in order to define a complete mechanical model
- Placet based beam dynamics simulations using a single bunch has been performed: initial jitter propagation, kicker response, residue propagation
- In the kick range [0-100] µm the (x,x') and (y,y') transports are practically linear
- Multibunch tracking simulation studies are planned to study the performance of the FF/FB system for 20 bunches
- Steering correction simulations using Placet for the FONT at ATF2 in progress