ATF2 Layout/Optics (v3.8)

ATF2 LAYOUT (v3.8)

Version 3.8 Changes

- rematched geometry (DR septa realignment)
- see report of $55^{\text {th }}$ ATF2 Weekly Meeting (August 22, 2007)
- IPBPM and nBPM reference cavities added; QBPM reference cavities (4) at Honda-san's suggested locations
- separate QBPM + mover at vertical "IP phase" for feedback (between QM14FF and QM13FF) ... now 34 QBPMs total
- updated diagnostic station locations (IPBPM, nBPM; no ODR to start)
- Okugi-san's stripline BPM assignments
- some EXT devices returned to v3.5 locations (Sugahara-san's list)
- drift between BDMP and dump increased from 1.0 m to 2.0 m
- three movers removed from FF matching quad section (QM16FF, QM15FF, and QM14FF; now 25 movers total)
- new initial Twiss and QM6R.1/QM7R. 1 strengths from "07dec03" optics
- QM6R.1: -0.71212 (DRLBW44) $\rightarrow-0.71174$
- QM7R.1: 0.39808 (DRLBW44) $\rightarrow 0.40822$

Q-BPM/Ref.cav. layout

- prefer to spread reference cavities with equally distance (temp. variation on cable, etc.)
- specified which QBPM belongs which ref.cav.
- removed the one at d / s of BDMP, may be strip-line is good eough.

from Honda-san's report of 55thd ATF2 Weekly Meeting (August 22, 2007)

Situation at QMI4FF-QMI3FF area

- Its true that there is a 1120 mm length space (flange to flange) between QM13FF and QM14FF.
- But subtracting the foot prints of concrete pillers, 817 mm is left for installing a device.
- The cylinder-flame of nBPM is $\sim 850 \mathrm{~mm}$, plastic covering is 1100 mm length. Not impossible but ..
- There will be 5 Q -BPM spares left, it can be used for pulse-to-pulse BPM if a high sensitivity electronics is available. Rigid girder and a mover stage will be needed also.

Idea for QF2IX-QMI6FF area

- This largest free space can contain both "IPBPM test setup" and "nBPM triplet".
- It will be possible to install other R\&D BPMs such as KNU group's BPM.

from Okugi-san's okugi_080807mod.ppt file

Stripline BPM Device List

01d BPM Name	Electrod e Length	Pipe Diamete r	Original				Modified				Bellows	
			Magnet Thickness	Pipe Length		Total Length	Magnet Thickness	Pipe Length		Total Length	Original	Modified
				Electro de Side	No Electrode			Electrode Side	No Electrode			
ML1X	40	Narrow	60	155	120	335	60	155	60	275	\bigcirc	\bigcirc
ML2X	40	Wide	60	180	120	360	180	155	330	665	\times	\bigcirc
ML3X	40	Wide	60	180	120	360	180	155	60	395	\times	\bigcirc
ML4X	40	Wide	180	120	60	360	180	155	60	395	\times	\bigcirc
ML5X	40	Wide	180	155	60	395	180	155	60	395	\bigcirc	\bigcirc
ML6X	40	Wide	180	120	60	360	180	155	60	395	\times	\bigcirc
ML7X	40	Narrow	180	120	60	360	180	155	220	555	\times	\bigcirc
ML8X	120	Narrow	60	270	80	410	180	220	60	460	\bigcirc	\bigcirc
ML9X	120	Narrow	180	220	300	700	180	220	60	460	\bigcirc	\bigcirc
ML10X	120	Narrow	180	220	300	700	180	220	60	460	\bigcirc	\bigcirc
ML11X	120	Narrow	180	220	300	700	180	220	60	460	\bigcirc	\bigcirc
ML12X	120	Narrow	180	220	300	700	N/A	220	30	250	\bigcirc	\bigcirc
ML13X	40	Narrow	N/A	N/A		170	N/A	N/A		170	\times	\times
ML14X	40	Narrow	N/A	N/A		375	180	155	60	395	\times	\bigcirc

Blue ; wide beam pipe
Red ; Long Electrode (High Resolution)

from Okugi-san's okugi_080807mod.ppt file

name	old name	function	type	location	comments
ML1X	ML2X	BPM	stripline (L.R.)	d / s end of QF1X (Hitachi 180)	MS1X move by +35 mm
ML2X	ML3X	BPM	stripline (L.R.)	d/s end of QD2X (Hitachi 180)	
ML3X	ML4X	BPM	stripline (L.R.)	d / s end of QF3X (Hitachi 180)	
ML4X	ML5X	BPM	stripline (L.R.)	d/s end of QF4X (Hitachi 180)	
ML5X	ML6X	BPM	stripline (L.R.)	u/s end of QD5X (Hitachi 180)	
ML6X	ML7X	BPM	stripline (L.R.)	u/s end of QF6X (Hitachi 180)	
ML7X	ML1X	BPM	stripline (L.R.)	d / s end of QF7X (Hitach 60)	
ML8X	ML14X	BPM	stripline (H.R.)	d / s end of QD8X (Hitachi 180)	
ML9X	ML8X	BPM	stripline (H.R.)	u/s end of QF9X (Hitachi 180)	
ML10X	ML9X	BPM	stripline (H.R.)	d / s end of QF13X (Hitachi 180)	
ML11X	ML10X	BPM	stripline (H.R.)	d / s end of QD14X (Hitachi 180)	
ML12X	ML11X	BPM	stripline (L.R.)	d/s end of QF15X (Hitachi 180)	

QBPM1X		BPM	C-band cavity	d / s end of QD10X (QEA 180)	No mover
QBPM2X		BPM	C-band cavity	d / s end of QF11X (QEA 180)	No mover
QBPM3X		BPM	C-band cavity	d / s end of QD12X (QEA 180)	No mover
QBPM4X		BPM	C-band cavity	d / s end of QD16X (QEA 180)	No mover
QBPM5X		BPM	C-band cavity	d / s end of QF17X (QEA 180)	No mover
QBPM6X		BPM	C-band cavity	d / s end of QD18X (QEA 180)	No mover
QBPM7X		BPM	C-band cavity	d / s end of QF19X (QEA 180)	No mover
QBPM8X		BPM	C-band cavity	u/s end of QD20X (Hitach 60)	C-band BPM with Hitachi
QBPM9X		BPM	C-band cavity	d / s end of QF21X (Hitach 60)	C-band BPM with Hitachi
name	old name	function	type	location	comments
ML1FF	ML12X	BPM	stripline (H.R.)	between QM12FF and QM11FF	pulse-to-pulse feedback
ML2FF	ML13X	BPM	stripline (L.R.)	d/s dump bend	

Sughara-san's List

- all devices from Sugahara-san's list returned to v3.5 locations
- tuning/tracking simulations have not yet been made to check the performance

FF: IP Area

Monitors : 3 beam size monitors
1 IP-BPM
1 C-band BPM
1 stripline BPM
1 Screen Monitor
1 ICT

from Okugi-san's Annecy meeting talk

EXT Diagnostic Section (version 3.8)

Final Focus (v3.7)
ATF2 Optics (v3.8)

$D(m)$

$\|\rightarrow\|\|\| \mid$

ATF2 Optics (v3.8)

Pulse-to-Pulse Feedback

- stabilize beam into Final Focus (especially at sextupoles)
- 2 dipole correctors per plane (Final Doublet phase and IP phase)
- 2 BPMs per plane (Final Doublet phase and IP phase)
- correctors and BPMs should be as far downstream as possible
- feedback BPMs should have no dispersion
- cavity BPMs used for feedback must have movers
- BPMs must have resolution \leq spot size for sub- σ stabilization
- requires sub-micron resolution for vertical BPM at IP phase
- use a dedicated QBPM with mover at the selected location (between QM14FF and QM13FF)
- use a stripline BPM for horizontal BPM at IP phase

ATF2 pulse-to-pulse feedback devices (v3.8)

ATF2 pulse-to-pulse feedback devices (v3.8)

Version 3.8 Parts List Issues

- 2 new IDX skew quadrupoles (QS1X and QS2X)
- 2 new 20 amp bipolar power supplies (QK1X and QK4X)
- QD14X running at 97% of max power supply current (see parts list ...)
- power supply for BDMP
- Feedforward/Feedback devices for EXT have not yet been incorporated into the MAD decks
- off-beamline components (detectors, gamma collimators, MONALISA, etc.) not included
- also see comments and notes on each worksheet of the parts list ...

Version 3.8 Optics and Simulation Issues

- still studying effects of far-off-axis extraction through QM7R. 1 ... may need to rematch EXT or change DR optics to compensate
- ambiguity remains in choice of locations for vertical dispersion correction skew quadrupoles (Okugi-san's locations and mine) ... determine from simulations which locations are most efficient
- Feedforward / Feedback / FONT kickers are not in the deck yet ... need a design (30 cm striplines? FEATHER kickers?)
- other Feedforward / Feedback device locations? (maybe some specifics at this meeting ...)
- simulations with estimated multipole content of SLAC epoxy kickers, QM7R.1, BS1X, shimmed QC3s, ...
- need to redo and expand full tuning simulations (especially with realistic errors in diagnostics)
- revisit fine-tuning of higher-order aberrations (à la Andre)
- need "small spot" optics for LW1X ($1 \mu \mathrm{~m}$) operation
- MPS issues for commissioning?

Version 3．8 Release Files

生 Index of／～mdw／ATF2／v3．8－Microsoft Internet Explorer		－｜－ ］$^{\text {x }}$
File Edit View Favorites Tools Help		㽢
		$\checkmark \rightarrow$ Go
Index of $/ \sim$ mdw／ATF2／v3．8		
Name	Last modified	Size
Parent Directory	18－Dec－2007 08：50	－
㿫 ATF2．save	18－Dec－2007 09：00	30k
坒 MTF2．saveline	18－Dec－2007 09：00	19k
？ATF2DeviceListv3．8r0．x1s	18－Dec－2007 08：51	117k
	18－Dec－2007 07：37	5 k
量 MTF2＿V3．8．mad	18－Dec－2007 09：00	8 k
䭍 ATF2V3．8Devices．fig	18－Dec－2007 09：04	26 k
耆 ATF2v3．8Devices．txt	18－Dec－2007 02：36	7 k
Y ATF2v3．8Layout．ppt	18－Dec－2007 04：17	3.6 M
氟 EXT＿v3．8．xsif	18－Dec－2007 07：37	23 k
蓴 FF＿v3．8．xsif	18－Dec－2007 07：37	I 17 k
邫 README．txt	18－Dec－2007 09：12	1 k
$1 \square$		
0	Internet	

Homework

Tracking Results

Program	$\sigma_{y}{ }^{*}(\mathrm{rms})$	$\sigma_{y}{ }^{*}(\mathrm{sig})$	$\gamma \varepsilon_{y}$	$\Delta \gamma \varepsilon_{y}$
	nm	nm	nm	$\%$
-------	-------------	------	-----	
MAD	38.261	35.524	32.8839	9.6
ELEGANT	38.401	35.551	32.9674	9.9
TURTLE	36.292	34.791	31.6332	5.4
DIMAD	38.165	36.575	32.7121	9.0
LUCRETIA				
SAD				

- perfect machine
- 10,000 particles (Gaussian distributions; 5б)
- sextupole component in SHI H-bends included
- multipoles in SLAC epoxy kickers, QM7R.1, BS1X, QF1, and QDO not included
- no chromatic correction in EXT

