

Summary of Dose Rate Estimations for IR Hall

T.Sanami SLAC/KEK

A.Fasso, L.Keller, A.Seryi , S,Rokni SLAC

Motivation

- Shield thickness along the beam line
 - Beam loss distribution
 - Physical and Political
 - Area classification
 - Access policy and control

Detector and Beam line component

• Detector type, Engineering design

→ Shielding thickness

• IR hall

Shaft and wall between detectors

Commissioning run

Shielding capability of a detector

- Self shielding or not
- Effects of gaps for cables and tubes
- Pacman thickness
 - Inner diameter
 - Requirement of penetration
- Effects from upstream part (muon etc)

3D Monte-Carlo simulation → MARS15-MCNP code is used

Beam Energy and Power : 500 GeV, 18 MW Beam loss : 1 W at any point Design goal : 0.05 mrem/h for normal, 400 mrem/h for mis-steering, 25 rem/h (3rem/event) for system failure Target material: 20 X0 Copper cylinder or actual component

→ Shielding capability : 25 rem/h /18MW = 1.39 mrem/h/kW 288 kW for 400 mrem/h, 36 W for 0.05 mrem/h

Cover of shaft and wall between dtectors

Case #	Detector	Target	To know	
1	None (3m conc. around)	Cu 20X ₀	Requirement of shaft cover	
2	None	Cu 20X ₀	Requirement of shaft cover and acceptable clearance for crane	

Geometries for calculation

25rem/h

 $10^{14} 10^{13} 10^{12} 10^{11} 10^{10} 10^9 10^8 10^7 10^6 10^5 0^4 10^3 10^2$ [mrem/h]

 $10^{12} 10^{11} 10^{10} 10^9 10^8 10^7 10^6 10^5 10^4 10^3 10^2 10^1 10^0 \text{ [mSv/h]}$

Self shielding detector : GLD

Case #	Detector	Target	To know	
3	GLD	FCAL	Overall self-shielding capability of detector	
4	GLD	Cu 20X ₀ @BDS	Connection point between BDS tunnel and Pacman	

Result #1 GLD FCAL hit case

ir Result #3 Beam loss in BDS tunnel MARS GUI-Slice;) BH_max(T) BV_max(T) B_max(T) Cm Relatively 2.00e+03 3.0 0. 3.0 thin NBx NBy NBz 20 20 20 Xmin(cm) Ymin(cm) Zmin(cm) 10^{11} 1.00e.03 - MARS15 proj.(y>0) - MARS15 proj.(y<0) 10^{10} 10^{9} Exp. hall $\begin{array}{c} 10^8 \\ 10^7 \\ 10^6 \\ 10^6 \\ 10^4 \\ 10^3 \end{array}$ 10^{8} 18MW beam loss at BDS 10^{6} 10^{5} 10^{3} -1.00e+03 10^{2} 250mSv/h 10^{1} 20X₀ Cu 10^{0} 500 1000 1500 0 -2.00e+03 1.00e+03 2.00e+03 3.00e+03 П Distance from the beam line [cm] 4.4e+11 $10^{14}10^{13}10^{12}10^{11}10^{10}10^{9}10^{8}10^{7}10^{6}10^{5}10^{4}10^{3}10^{2}10^{7}10^{5}10^{5}$ |y|<50, 500<Z<600 250mSv/... +7. Draw Quit Print Grab Aspect Batio: X:Z = 1:0 97087

Self shielding detector : SiD

Case #	Detector	Target	To know
5	SiD	LowZ	Overall self-shielding capability of detector

Non self shielding detector : 4th concept

Case #	Detector	Target	To know	
6	6 4th Cu 20 X ₀		Example of shielding	

Geometries for calculation

Results of calculation

Cryo penetration

Case #	Detector	Target	To know	
7	GLD	Cu 20 X ₀	Penetration of pacman	

Dose rate for 25cm 1 knee

Summary

- Still unknown parameters
 - Beam loss distribution and scenario
 - Area classification
 - Detector and Beam line component
- IR hall
 - Shaft and wall between detectors
 - Commissioning run
 - Shielding capability of a detector
 - Self shielding or not
 - Effects of gaps for cables and tubes

– Pacman thickness

- Inner diameter
- Requirement of penetration

.

٠

<u>Question</u>: Do muons from sources in the collimation section cause a dose rate problem outside a self-shielded detector?

Plot showing how the 5 m magnetized wall disperses muons from a single source which reach the IR hall

<u>Answer</u>: The estimated dose rate outside a 6.5 m radius detector from all sources, 0.1% collimated halo, both beams, is 0.045 mrem/h – SLAC limit is 0.05 mrem/h

IRENG Group D Meeting 08/01/2007

İİL

Design Goal

[SLAC rule]

- Normal operation :
 - \rightarrow 0.05mrem/h (= 0.5 $\mu Sv/h)$ for GERT, 0.5mrem/h (= 5 $\mu Sv/h)$ for RW
- Miss steering :
 - → 400mrem/h (= 4mSv/h)
- System Failure :

→ 25rem/h (250mSv/h) for maximum credible beam loss in any accessible area

assuming that the BCS devices that limit beam power have failed

Design Goal

[LHC design] (from http://indico.cern.ch/conferenceDisplay.py?confld=1561 talk of D. Forkel-Wirth)

- Normal operation :
 - \rightarrow 0.3 mrem/h (= 3 μ Sv/h) for Simple controlled area
 - \rightarrow 0.1 mrem/h (= 1 μ Sv/h) for Supervised area
 - \rightarrow 0.01 mrem/h (= 0.1 $\mu Sv/h)$ for Non-designated area
- Total Beam loss :
 - \rightarrow 5 rem (50mSv) for Simple controlled area
 - \rightarrow 250 mrem (2.5mSv) for Supervised area
 - \rightarrow 30 mrem (0.3mSv) for Non-designated area

[J-PARC design] (from Dr. Nakashima, JAEA)

• Normal operation : (1W/m beam loss assumed for 1MW)

 \rightarrow 1.25 mrem/h (= 12.5 $\mu Sv/h)$ for Controlled area

 \rightarrow 0.025 mrem/h (= 0.25 $\mu Sv/h)$ for In-site

Total Beam loss :

Accelerator stops within 1 sec

by monitoring beam current, beam loss and 1 hour integrated dose rate

SiD	Iron Yoke, End	EMcal, Hadron cal,	Vertex Det, Tracker,
(Small detector)	<u>cap</u>	Solenoid, Mag. field	Muon chmabers

Mag. Field

Shield effective part (underlined parts) must be taken into account.

GLD

Endcap Tracker, FCAL, BCAL, EM Calorimeter

 \rightarrow W (ρ =9.9) for >20MeV, W+CH2 (ρ =9.9) for <20MeV

Hadron Calorimeter \rightarrow Pb(8.88) for >20MeV, Pb+CH2 (ρ =8.88) for <20MeV

Use structure and values described in http://confluence.slac.stanford.edu/display/ilc/sid00

Iron Yoke → Octagonal shape

EM Calorimeter → W plates 0.275cm x 20layers + 0.50cm x 10layers

Hadron Calorimeter →Fe plates 2.0cm x 34layers

- Experimental hall : 30m long 30m width 30m height
 - Tentative, depend on crane size, how to assemble detectors,, etc.
- BDS tunnel and Pacman
 - Tentative, depend on shield design, scheme of detector exchange, etc.

18MW loss Dose attenuation in concrete at 10m from the beam