#### ILC Total Project Cost Scaling with Gradient and Cost Cutting Proposals



Chris Adolphsen, MLI KOM, 9/28/07

#### Cryomodule and Cryogenic Costs

Pulse Length: Tfac = (Tb + Tfo\*g/go)./(Tb + Tfo);

Coupler Cryo Loading  $Pfac = (g/go).^{(Tb + 2^Tfo^g/go)./(Tb + 2^Tfo);$ 

Cavity Cryo Loading: Gfac = (g.^2/go^2).\*Qfac.\*(Tb + 1.1\*Tfo\*g/go)./(Tb + 1.1\*Tfo);

Cryomodule + Cryogenic Costs = (C\_mod + C\_inst + C\_vac

+ (C\_plant + C\_dist + C\_shaft)\*(0.51 + 0.9\*Pfac + 0.40\*Gfac)) .\* (go./g);



#### **RF System Cost**

Pulse Length: Tfac = (Tb + Tfo\*g/go)./(Tb + Tfo);

Number of klystrons and modulators independent of gradient – cavities fed per klystron scale as go/g.



#### **Civil Cost**

Pulse Length: Tfac = (Tb + Tfo\*g/go)./(Tb + Tfo);

Assume electrical and cooling cost scale as load

Civil Cost =  $C_tunnel *(go./g) + C_elect*Tfac + C_cooling*(0.22 + 0.78*Tfac);$ 



#### Americas ILC Cost Versus Linac Gradient

for gradient-independent cavity costs (blue curve, right plot), and gradient-dependent cavity costs (green curve, right plot) based on the yield from 17 Zanon EP cavities (left plot)





#### Alternative RF Distribution System



Variable Tap-offs (VTOs)

3 dB Hybrids

# Gradient Optimization with VTOs and Circulators

Consider uniform distribution of gradient limits  $(G_{lim})_i$  from 22 to 34 MV/m in a 26 cavity rf unit - adjust cavity Q's and/not cavity power (P) to maximize overall gradient while keeping gradient uniform (< 1e-3 rms) during bunch train

| Case                                                               | Not Sorted [%] | Sorted [%]                                              |
|--------------------------------------------------------------------|----------------|---------------------------------------------------------|
| Individual P's and Q's<br>(VTO and Circ)                           | 0.0            | 0.0                                                     |
| 1 <i>P</i> , individual Q's<br>(Circ but no VTO)                   | $2.7 \pm 0.4$  | 2.7 ± 0.4                                               |
| P's in pairs, Q's in pairs<br>(VTO but no Circ)                    | 7.2 ± 1.4      | $\left(\begin{array}{c} 0.8 \pm 0.2 \end{array}\right)$ |
| 1 P, Q's in pairs<br>(no VTO, no Circ)                             | 8.8 ± 1.3      | $3.3\pm0.5$                                             |
| G <sub>i</sub> set to lowest G <sub>lim</sub><br>(no VTO, no Circ) | 19.8 ± 2.0     | 19.8 ± 2.0                                              |

#### Optimized $1 - \langle G \rangle / \langle G_{lim} \rangle$ ; results for 100 seeds

#### **Cost Implications of Current Yield**

- Assume cavities produced with flat distribution of sustainable gradients
  (G) from 22 MV/m to 34 MV/m with <G> = 28 MV/m
- With Qeo optimized for Go = <G>, achieve flat cavity field at G with
  - Qe = Qeo \* ln(2) / ln (1 + G/Go \* Qeo/Qe)
  - Input Power = Po \* (1/4) \* (1 + G/Go \* Qeo/Qe)^2 \* (Qe/Qeo)
- Requires 6.8% more power on average per rf unit
- Maintain rf unit layout but increase linac length by 31.5/28 -1 = 12.5%
- At 31 MV/m, which is a +3-sigma variation in the mean gradient of a half rf unit, have same 16% tuning overhead as present design at 33 MV/m.
- Considering all changes, ILC cost increases by about 7%

# Main Linac Cost Cutting Proposals

- Lower power-limited gradient to 33 MV/m from 35 MV/m - incorporated in design
  - One 10 MW klystron feeds 26 cavities (9-8-9 configuration) instead of 24 (three 8-cavity cryomodules)
  - Number of rf units reduced by 1/13, as is the peak AC power and cooling to first order.
  - Lowered linac beam current form 9.5 mA to 9.0 mA in second round request to allow more LLRF tuning overhead.

- Eliminate 3.5% overhead of rf units incorporated in design (although included 400 m additional empty tunnel length for future upgrade)
  - If the sustainable cavity gradient on average equals the design gradient of 31.5 MV/m, have no overhead at 500 GeV cms so energy lower if any rf units fail
  - If the sustainable cavity gradient on average equals or exceeds the 33 MV/m power-limited gradient, have 4.8% rf unit overhead at 500 GeV cms
  - Retain the ~ 400 m of tunnel length (as drift space) to be used if more overhead is desired in the future

- Eliminate cryomodule static loss uncertainty factor incorporated in design, but as a 1.5 factor for both static and dynamic ?
  - Cryoplant heat load = Fo\*(Fu\*static + dynamic)
  - Fo = 1.4 is an overcapacity factor to account for degradation of plant performance, variation in cooling water temperature, and operational overhead.
  - Fu = 1.5 was included as a uncertainty factor in the cryomodule static heat load, which increases the cryocapacity by 13%. Instead, include this as a risk factor in the cryogenic system cost.

- Halve Beam Current Rejected for now
  - One 10 MW klystron would drive 6 cryomodules
  - Install only every other RF unit in the service tunnel leave room for future upgrade.
  - RF pulse would increase from 1.565 ms to 2.130 ms
  - Still would allow full current operation at half energy



- Eliminate Service Tunnel and put RF System in Beam Tunnel as in XFEL – Rejected
  - Offsetting costs from
    - Decreased availability need to increase rf unit overhead by 3% so klystron/modulator MTBFs reasonable.
    - Shielding required to limit electronics expose to cavity dark current induced radiation
    - Installation constraints would likely slow process
    - Limited access during operation
  - From cost analysis, found that if dual-tunnels reduced from 5.0 m to 4.5 m, there would not be much savings compared with a single, larger diameter tunnel

- Decrease beam pipe diameter in Quad, BPM and Correctors from ~ 80mm to 35 mm - Postponed
  - Quad package smaller hence cheaper. Also
    - Quad magnetic center more stable with field change
    - BPM resolution better
    - Prevents beam from hitting cavity irises
  - Quad package shorter by up to 0.6 m (each Linac up to 160 m shorter)
  - Short-range transverse wakes ~ 10% larger, and up to 10% more HOM power loss in cryo-system (1% increase in cryo capacity)

- Adopt ACD RF System Postponed
  - For pulse charger, use central 10kV SCR converter and satellite ~2 kV switching supplies at each station
  - Use Marx Modulator instead Pulse Transformer / Bouncer design
  - Use Sheet Beam Klystron (SBK) instead of MBK. Also saves 3 MW of solenoid power and associated cooling.
  - Feed cavities in pairs to eliminate circulators. Use manual phase shifters instead of 3-stub tuners, and use adjustable tap-offs to maximize average gradient
  - Total rf system savings ~ 50%

- Streamline LLRF System Postponed
  - Place 100:1 down-mixers in tunnel to drop cable costs by 10.
  - Multiplex forward and reflected power RF signals in tunnel to save cable plant
  - Use single larger penetration with steel conduit for DC power and copper conduit for signals, shared with two water-cooled waveguides
  - Multiplex motor drives for the cavity tuner motors and coupler Qext control
  - Eliminate core processor redundancy in ATCA crates