ILC-EDR Kick-off Meeting Main Linac Integration Organization and Tasks

Sept. 27, 2007

Akira Yamamoto

ILC-EDR Kick-off Meeting, Main Linac Integration To be held at Fermilab, Sept. 27-28, 2007

ILC Project Management

V-070710

as a proposal for the organization toward EDR

ILC Project Management and Sharing Responsibilities

- Project Managers
 - responsible for
 - Leading the world-wide technical development effort
 - efficiently and effectively
 - Setting technical direction and executing the project toward realization of the ILC
 - Day-to-day project execution and commucniation
- Regional Directors & Institutional Leaders responsible for
 - Promoting, funding and authorizing the cooperation programs.
 - Formaly responsible for institutional activities, funding and oversiting the technical progress,

Project Management Structure

(baseline)

Project Management Structure

Area: Main Linac Technology (to be completed)

Regional/ - Director-U - Director-E - Director-A	I <mark>ntsitutio</mark> r S: Mike Ha U: B. Fostel S: M. Nozal	n al Effort: rrison r ki	Technical Effort (ML (SCRF) Technology): - Project Manager: A. Yamamoto - Associate Managers: T. Shidara, J. Kerby, * Group leader, ** Co-leader					
Regions	Institute	Institute Leaders	Cavity (Process) L. Lilje*	Cavity (Prod./Int.) H. Hayano*	Cryomodule N. Ohuchi* -H. Carter**	Cryogenics T. Peterson*	HLRF S. Fukuda*	ML Integr. C. Adolphsen
US	Cornell Fermilab SLAC ANL J-lab	H.Padamsee R. Kephart T.Raubenhaimer	H.Padamsee	C.Adolphsen	H.Carter	T.Peterson	R. Larsen	C. Adolphsen
EU	DESY CERN Saclay Orsay INFN Spain	R.Brinkman J. Delahaye O. Napoly A.Variola C. Pagani	L.Lilje	C. Pagani	Parma Franco Pal.	Tavian		
AS	KEK Korea Inst. IHEP India Inst.	K.Yokoya	Noguchi, Saito	Hayano	Tsuchiya/ Ohuchi	Hosoyama/ Nakai	Fukuda	

Technical Responsibilities :

(from RDR Chapter 7)

- Green indicates a commitment:
 - institute will deliver
- MoUs facilitate connection:
 - Project Management (authority and responsibility) and institutions (funding and resources).
- The 'C' \rightarrow coordinating role in a WP
 - Each WP has one coordinator.

Main Linac Integration Groups Organization for EDR-tasks

		Cavity Cryomodule Cryogenics Vacuum	HLRF LLRF Control	Beam dynamics, Quadrupoles, Diagnositic	,,,	,,,
US	Cornell Fermilab SLAC ANL J-lab					
EU	DESY CEA-Saclay -Olsay INFN Spain CERN					
AS	KEK Korea Inst. IHEP India Inst.					

Technical efforts to EDR

- Complete the critical R&D
 - as identified by the (R & D Board and) S0, S1, S2 task forced and ...
- Establish the base-line design,
 - Technologies to be chosen and to be demonstrated through premass-production
 - Learn industrialization
 - Obtain the maximum benefit from the realized project
- Proceed alternate design and development
 - As technology back-up to achieve the ILC design goal,
 - with "Plug-compatible" concept, and
 - for maximizing performance/cost (value-engineering)

2007/08 EDR Milestones

07-8:	Korea ILCSC: » New EDR organization start,
07-9, 10: 07-10:	EDR Kick Off Meetings Fermilab ILC-GDE meeting » Establish initial Base-line for ED phase » EDR Work Packages to be discussed
08-1,2 08-3	EDR-R&D Meetings Tohoku (Japan) GDE Meeting

M.L.I. – EDR Tasks and Discussions in KOM

- Base-line Design and interface parameters to be verified,
 - Functional parameters and interface conditions to be unified,
 - What have to be achieved and what have to be maintained,
 - What can be plug-compatibly improved,
 - How the tasks can be shared among sub-groups,
- Critical Goal:
 - Technology to achieve E-op = 31.5 MV/m
 - Otherwise, need to reduce the gradient or adjust the machine design
 - Need a vital program of both R&D and demonstrations
- Important Work at Main Linac Integration tasks
 - System optimization for the best "value engineering", such as
 - Beam dynamics and quadrupoles system design,
 - Cryomodule design to be optimzed with cryogenics system design

Summary for Charges

- Functional performances and Interfaces to be verified,
- EDR design work and R&D (goal)
 - Basic R&D to be completed
 - Learning mass production
- Discussions towards
 - "unified design/specification" and/or ""plugcompatible design/specification
- Task sharing and schedule

Appendix

For discussions

Cavities & Cryomodules

Producing Cavities

4th generation prototype ILC cryomodule

Subdivision	Length (m)	Number
Cavities $(9 \text{ cells} + \text{ ends})$	1.326	$14,\!560$
Cryomodule (9 cavities or 8 cavities $+$ quad)	12.652	1,680
RF unit (3 cryomodules)	37.956	560
Cryo-string of 4 RF units (3 RF units)	154.3 (116.4)	71(6)
Cryogenic unit with 10 to 16 strings	1,546 to 2,472	10
Electron (positron) linac	$10,917 \ (10,770)$	1(1)

ML (SCRF) Technology Design Parameters

As of Sept. 27, 2007 To be integrated

Cavity

RF properties	Frequency	1.3 GHz			
	Gradient	31.5 MV/m	Opertaion		
		35 MV/m	Vertical test		
	Q0	1.0 E10	@ 31.5 MVm		
		0.8 E10	@ 35 MV/m		
	HOM dumping		Q		
			R/Q		
	Short range				
	wake				
	T-operation	2.0 K			
Physical Prop.	Length	m			
	Aperture	mm			
	Alignment acc.	300 um			
	Material	Nb			
	Wall thickness	2.8 mm			
	Stiffness				
	Flange/seal		Material?		
	Pressure				
	Lorentz F detune. at E-max	1.00 kHz			
	Out. Dia. He vessel				
	Mag. shielding		Inside/outside		

Coupler

Power Req.	Operation	400 kW	For 1,300 us		
	Processing	100 kW	Up to 400 us		
		600 kW	> 400 us		
Processing time	Warm	hours,			
	Cold	hours			
Heat loads	2К				
	4 K				
	40/80 K				
Cavity vac. Integ.		2	# of windows		
			biss		
					R
RF properties	Qext	Yes/No	tunable		
	Tuning range	1- 10 E6	If tunable		
Physical prop.	Position	See cav. lentgh			
	Flange		compatible		
Instrumentation			Vac. level		
			Spark detection		
			Electron current		
			temperature		

Tuner

Slow tuner					
	Tuning range	600 kHz			
	Hysteresis				
	Allowed Power-off Holding require.				
	Physical envelope				
	Mag. Shielding	2 mG	At cabity surface		
	Survive Freq. Change in lifetime of machine		Could be total number of steps in 20 year, ~ 20 mio. Steps in TESLA?		
Fast tuner	Tuning range	1 kHz	Oever flat-top		
	Survive Freq. Change in lifetime of machine		Number of pulses over 20 years.		
					R

Cryomodule

			8 cav+ 1 quad.	9 cav.	9 cav. + 2 q	6 cav. 6 q	
Number			627	1188	6	4	
Heat load	2K						
	5K						
	50 - 80 K						
Phys. Prop.							
Vacuum Ves.	Lengh Out. Diameter Inner diameter						
	Connection flange to input coupler	Dimension Position Tolerance					
	Connection flanges to Next cryomodule	Dimension Tolerance					
He jacket	Length Outdiameter Inner diameter Support position						
Cooling pipes	Outer diameter Inner diameter Location Maximum pressure						
Thermal rad. S.	Number of shield	One or two					
Support post	Number of post						R
Quardupole mag.	Field gradien Lengt Number of correctors, Alignment, Tolerance, Vibration,						A

Cryogenics

Cryomodule							
				Pressure		Temperature	
						Nominal range	
		Line	MAWP	Min.	Max.	Min.	Max
			kPa	kP	kP	К	К
	1.3 GHz RF cav.	B, G.	400	2.7	3,600	1.95	2.05
	Subcooled He	А	2,200	130		2.2	
	Cold thermal int.	C.D,	2,200	500	550	5.0	8.0
	Warm therm. int.	E, F	2,200	1,800	2,000	40	80
	Warmup/cool d.	Н	400			2.2	300
				Uncertainty		Plant Ov. Cap.	
Cryoplant	Efficiency		Min. % carnot	Static	dynamic	Factor	
	2 K level		22 %	1.10	1.10	1.4	
	4-8 K level		24	1.10	1.10	1.4	
	40 - 80 K		28	1.10	1.10	1.4	

HLRF

Beam Dynamics (Q. BPM..)