

ACD Down-Select Criteria and Time Scales for Cavity Shapes and Processing

Lutz Lilje GDE

ILC ML Kick-off Meeting FNAL 27.9.2007 **Global Design Effort**

1

Outline

- Short recapitulation on proposed changes for the cavity system
 - see Cavity KOM talk
- Development of criteria
 - Testing needed
 - Estimation of minimum time needed to accomplish those

Cavity and cavity system design

- compare XFEL choices with mandatory and potential design changes for the baseline
- Review of RDR work for cavity system,
 - possible design changes,
 - fabrication changes for baseline cavity
 - HOM,
 - seal,
 - endgroup welding,
 - thicker endplate,

TTF Cavity Today and XFEL Cavity

Old

New

- Only minor design changes to reduce cost/simplify manufacturing will be done e.g.
 - Removal of coupler port stiffener
 - Removal of 'pockets' short side
 - Removal of outside recess
 - Less holes in stiffener ring
 - Thinner stiffener ring
 - Review tolerances
 - Loosen where possible e.g. stiffeners rings

Mandatory Changes to Baseline: Cavity

- Cavity Length
 - Only real necessary change to increase ILC fill factor
 - Main issues
 - Need more compact tuner design
 - XFEL will not change this

Optional changes: Cavity

- Material
 - Large-grain
 - Straight-forward implementation if material available
 - See W. Singer talk
 - Still need thorough analysis of cost-benefit
 - Performance demonstration on multi-cells needed
 - So far only BCP result available
 - EP underway at DESY (stay tuned...)
- HOM design
 - Coupler kicks
- Tank material
 - Cost
- Thicker endplate
 - Lorentz-force detuning
- Seal
- End-group welding

Option : Large Grain cavities / BCP

Heraeus / Accel (three cavities)

Less fabrication steps (lower cost) no forging-rolling disk from ingot (less material pollution) High RRR ~ 500

(avoid HT to $\nearrow K$)

Probably higher gradients after Electropolishing (coming tests)

ILC ML Kick-off Meeting FNAL 27.9.2007

Global Design Effort

Large Grain Nb: Comparison of EP vs. BCP

Two cavities (deep drawn cups) of Heraeus Nb with RRR 500; Reproducible gain of 10 and 13 MV/m after EP compared to BCP

The European

X-Ray Laser Project

8

Optional changes: Cavity

- Material
 - Large-grain
- HOM design
 - Coupler kicks
 - Needs further evaluation
 - Mitigation could be straight-forward
- Thicker endplate
 - Lorentz-force detuning
- Tank material
 - Cost
- Seal
- End-group welding

Coupler Kick

Igor Zagorodnov and Martin Dohlus ILC Workshop, DESY 31 May, 2007

ILC ML Kick-off Meeting FNAL 27.9.2007

Global Design Effort

10

ILC ML Kick-off Meeting FNAL 27.9.2007

Global Design Effort

HOM Wake Mitigation Options

- Following Chris Adolphsen there are fixes:
 - "Igor's solution of rotating the HOM relative the FPC this reduces the effect by a factor of 10"
 - Cavity design change
 - Needs beam test
 - "feeding every other cavity or every other cryomodule from the opposite side (like is done in the SLAC linac)."
 - Straight-forward solution
 - Is this still feasible from RF unit to RF unit?
 - Possibly simplest way to alter tunnel layout
 - "reducing the beam pipe diameter to 60 mm so the HOM and FPC antennae are not 'seen' directly by the beam (this is not a problem for the LL cavity for example note the irises could still be 70 mm diameter, but the wake would still be larger due to the smaller beam pipe size)"
 - Cavity design change
 - Needs beam test

Optional changes: Cavity

- Material
 - Large-grain
- HOM design
 - Coupler kicks
- Thicker endplate
 - Lorentz-force detuning
 - E.g. TESLA-type cavities at KEK
 - Thicker endplate design necessitated other design changes
 - Need to prove improvement in stiffness reduces Lorentz-force detuning
- Tank material
 - Cost
- Seal
- End-group welding

Improvement in the STF Baseline Cavities

Fabrication of the STF Baseline Cavities

- Surface treatment at 'standard' company
- Field emission in first processing
- Only few cells are limited at low field ~21 MV/m
 - Similar to first 2 production runs at TTF few bad cells, but larger number gaussian distribution at higher gradient
- Best cavity at 29 MV/m!
- Tighter QC for future production runs will be implemented

Vertical Test Results, Eacc of cells

Before (total~250 μm), after 2nd BP (total~500 μm)

Optional changes: Cavity

- Material
 - Large-grain
- HOM design
 - Coupler kicks
- Thicker endplate
 - Lorentz-force detuning
- Tank material
 - Cost
 - Need to understand cost differences between regions for Ti as tank material
 - Need to understand technical issues with stainless better
- Seal
 - Reliability
 - DESY 'diamond'-shaped seal choice for XFEL
 - Each lab tends to have its favorite sealing technology
 - Need 'neutral' technical analysis on pros and cons
 - Need data on reliability e.g. number of re-assemblies needed
- End-group welding
 - Cost
 - Need performance demonstration
 - Need cost-benefit analysis

Criteria for down-select

- Need a fair process
 - Have to define tests which everybody agrees to
 - See Rich Staneks survey from the cavity KOM as a starting point
 - As Rich pointed out there was a surprising degree of agreement
- Timeline depends on available funding
 - as you will see the testing proposed needs a significant effort to prove some ACDs
 - this is difficult to judge for me

Testing Needed for ACDs

1	Validation Survey			
2	If you make a change in this \rightarrow	Cavity Shape	Cavity Material Large/Small Grain	Magr L
3	You validate the change by doing this ↓			
4	Can design change be made without testing?	N	N	
5	Number of components fabricated & tested?	24-30	30	
6	acceptable? (Y/N)	N	Y (V&H)	
7	Hours of bench testing?		1000hrs	
8	Required to be tested in cryomodules? (Y/N)	Y	N	
9	Number of cryomodules?	3		
10	Required to be tested in RF Unit/String test? (Y/N)	Y	N	
11	Number of hours of string testing?	1000hrs	0	

- From Rich Stanek's survey during the Cavity KOM
- Cavity material down-select possible after 30 cavities with High-Power test
- Cavity shape downselect only after 3 modules tested with beam

Cavity ACD Downselect

- During Cavity KOM the discussion was to agree on test procedures needed to validate a design change
- Main Issues
 - Cavity design
 - HOM damping concepts need verification
 - Could discuss whether a completely new shape and rotation of HOMs (for wakefield reduction) have identical requirements
 - Beam test seems indispensable
 - Cavity material
 - seems to be straight-forward
 - A certain amount (~30 cavities) should have been high-power tested

Cavity preparation

- This was not discussed at the KOM in detail
 - Is not really an ACD topic, rather an addition to the baseline
 - Look at S0 planning

Translate the testing requirement to a timescale

- Neglect financial constraints for one slide
- 30 Cavities
 - Production: 0.5 years minimum
 - if material available
 - Preparation and horizontal test: 1 year minimum
 - Installation in modules and string setup: 1 year minimum
- Large-grain material
 - ~2 years to arrive at the proposed tests
- Alternative shapes
 - At least 2-3 years
- Financial constraints mode switched on again

Cavity Preparation Down-select

- Main issue is reproducibility for the baseline
 - Candidate processes developed until today are very promising
 - Fresh EP, Degrease, Alcohol rinse
 - Test requirement (see S0)
 - Confirm results in more than one lab (tight-loop or variant thereof could be used)
 - Time-scale: 1 year
 - Need to vertically test 30 cavities in a production-like mode with sufficient yield in ultimate experiment
 - Time-scale. 1 year minimum if cavities available, if production needed add 1 year
- Total time-scale is roughly 2 years minimum
 - Just in time for EDR (getting tighter daily)
 - Set as a timescale by GDE EC...

ILC ML Kick-off Meeting FNAL 27.9.2007

Global Design Effort

- Are there further ideas ?
 - Of course I like to collect those as soon as possible
- Are there further ideas on the testing of components and concepts ?
- How do we keep the process open enough not to miss an important opportunity?
 - funding limitation needs to be addressed as we are proving the baseline (S0) and work on ACDs simultaneously
- Time-scales given are optimistic
 - e.g. assume no breakdowns in infrastructure like high-pressure rinse systems