

ILC Main Linac Superconducting Quadrupole

V. Kashikhin for Magnet group

September 27, 2007

ILC Main Linac - KOF

Outline

- Specification
- First Model Goals
- Quadrupole Concept
- Magnetic Design
- Quench Protection
- Mechanical Design
- Magnet Tests
- Quadrupole model status
- Quadrupole package R&D and EDR
- Summary

Integrated gradient, T	36				
Aperture, mm	78				
Effective length, mm	666				
Peak gradient, T/m	54				
Field non-linearity at 5 mm radius, %	0.05				
Dipole trim coils	Vertical+Horizontal				
Trim coils integrated strength, T-m	0.075				
Quadrupole strength adjustment for BBA, %	-20				
Magnetic center stability at BBA, um	5				
Liquid Helium temperature, K	2				
Quantity required	560				

Quadrupole Misalignment Tolerances

Tolerance Vertical (y) plane BPM Offset w.r.t. Cryomodule 300 µm Quad offset w.r.t. Cryomodule 300 µm Quad Rotation w.r.t. Cryomodule 300 µrad Cavity Offset w.r.t. Cryomodule 300 µm Cryostat Offset w.r.t. Cryomodule 300 µm Cryostat Offset w.r.t. Survey Line 200 µm Cavity Pitch w.r.t. Survey Line 20 µrad Cryostat Pitch w.r.t. Survey Line 20 µrad BPM Resolution 1.0 µm → 1st 7 BPMs have 30 µm RMS offset w.r.t. Cryostat > BPM transverse position is fixed, and the BPM offset is w.r.t. Cryostat > Only Single bunch used											
 BPM Offset w.r.t. Cryomodule 300 µm Quad offset w.r.t. Cryomodule 300 µm Quad Rotation w.r.t. Cryomodule 300 µrad Cavity Offset w.r.t. Cryomodule 300 µm Cryostat Offset w.r.t. Survey Line 200 µm Cavity Pitch w.r.t. Cryomodule 300 µrad Cryostat Pitch w.r.t. Survey Line 20 µrad BPM Resolution 1.0 µm → 1st 7 BPMs have 30 µm RMS offset w.r.t. Cryostat > BPM transverse position is fixed, and the BPM offset is w.r.t. Cryostat > Only Single bunch used 		Tolerance Vertical (y) plane									
Quad offset w.r.t. Cryomodule 300 μm Quad Rotation w.r.t. Cryomodule 300 μrad Cavity Offset w.r.t. Cryomodule 300 μm Cryostat Offset w.r.t. Survey Line 200 μm Cavity Pitch w.r.t. Cryomodule 300 μrad Cryostat Pitch w.r.t. Survey Line 200 μm Cryostat Pitch w.r.t. Survey Line 20 μrad BPM Resolution 1.0 μm → 1 st 7 BPMs have 30 μm RMS offset w.r.t. Cryostat > BPM transverse position is fixed, and the BPM offset is w.r.t. Cryostat > Only Single bunch used Disclose the second seco	BPM O	BPM Offset w.r.t. Cryomodule 300 µm									
Quad Rotation w.r.t. Cryomodule 300 µrad Cavity Offset w.r.t. Cryomodule 300 µm Cryostat Offset w.r.t. Survey Line 200 µm Cavity Pitch w.r.t. Cryomodule 300 µrad Cryostat Pitch w.r.t. Cryomodule 300 µrad Cryostat Pitch w.r.t. Survey Line 20 µrad BPM Resolution 1.0 µm → 1st 7 BPMs have 30 µm RMS offset w.r.t. Cryostat > BPM transverse position is fixed, and the BPM offset is w.r.t. Cryostat > Only Single bunch used	Quad offset w.r.t. Cryomodule 300 µm										
 Cavity Offset w.r.t. Cryomodule 300 µm Cryostat Offset w.r.t. Survey Line 200 µm Cavity Pitch w.r.t. Cryomodule 300 µrad Cryostat Pitch w.r.t. Survey Line 20 µrad BPM Resolution 1.0 µm → 1st 7 BPMs have 30 µm RMS offset w.r.t. Cryostat > BPM transverse position is fixed, and the BPM offset is w.r.t. Cryostat > Only Single bunch used 	Quad Ro	otation w.r.t. Cryomodule	300 µrad								
Cryostat Offset w.r.t. Survey Line 200 μm Cavity Pitch w.r.t. Cryomodule 300 μrad Cryostat Pitch w.r.t. Survey Line 20 μrad BPM Resolution 1.0 μm → 1 st 7 BPMs have 30 μm RMS offset w.r.t. Cryostat > BPM transverse position is fixed, and the BPM offset is w.r.t. Cryostat > Only Single bunch used	Cavity	Offset w.r.t. Cryomodule	300 µm								
Cavity Pitch w.r.t. Cryomodule 300 µrad Cryostat Pitch w.r.t. Survey Line 20 µrad BPM Resolution 1.0 µm → 1 st 7 BPMs have 30 µm RMS offset w.r.t. Cryostat > BPM transverse position is fixed, and the BPM offset is w.r.t. Cryostat > Only Single bunch used	Cryostat	Offset w.r.t. Survey Line	200 µm								
Cryostat Pitch w.r.t. Survey Line 20 µrad BPM Resolution 1.0 µm → 1 st 7 BPMs have 30 µm RMS offset w.r.t. Cryostat > BPM transverse position is fixed, and the BPM offset is w.r.t. Cryostat > Only Single bunch used	Cavity	Pitch w.r.t. Cryomodule	300 µrad								
 ⇒ 1st 7 BPMs have 30 μm RMS offset w.r.t. Cryostat ⇒ BPM transverse position is fixed, and the BPM offset is w.r.t. Cryostat > Only Single bunch used 	Cryosta	t Pitch w.r.t. Survey Line	20 µrad								
 → 1st 7 BPMs have 30 µm RMS offset w.r.t. Cryostat > BPM transverse position is fixed, and the BPM offset is w.r.t. Cryostat > Only Single bunch used 		BPM Resolution 1.0 µm									
	 → 1st 7 BPMs > BPM transv > Only Single 	have 30 μm RMS offset w.r verse position is fixed, and t e bunch used	.t. Cryostat he BPM offset is w.r.t. Cryost	tat							
Steering is performed using Dipole Correctors		norformed using Dinels Co.	rrectors								

Main Linac Cryomodule

Cryomodule cross-section

September 27, 2007

ILC Main Linac - KOF

- Check quadrupole concept, magnetic and mechanical design
- Prove fabrication technology
- Measure the magnetic center stability at -20% gradient change with and without dipole shell type coils
- Investigate the acceptable (meet spec.) range of quadrupole integrated strength changes related to different beam energy levels
- Test quench protection system
- Test dipole correctors using trim coils
- Cold mass cost analysis

Experimental Model Concept

- Superferric quadrupole configuration with four racetrack coils and cold iron core
- Low peak current (100 A) to reduce heat load from current leads because each magnet powered separately
- NbTi with small filament size wire to reduce superconductor magnetization effects
- Coils wound into a stainless steel channel to provide mechanical rigidity and robast coil manufacturing technology
- Stainless steel structure around coil used as closed mold for coil epoxy vacuum impregnation
- Low carbon steel iron yoke is laminated to use stamping as more economic process
- All four poles and flux return combined in one solid lamination
- Racetrack coils and yoke configuration provide easy assemly/disassembly
- Yoke has magnetic shields at both ends to reduce fringe fields
- Two dipole shell type trim coils mounted on beam pipe outer surface
- Trim coils with beam pipe could be installed/removed
- Each main coil has heater which connected in series with others

Cold mass diameter	280 mm
Cold mass length	680 mn
Pole length	600 mm
Peak current	100 A
Superconductor length	5 km
Yoke weight	250 kg

September 27, 2007

3D Quadrupole Magnetic Design

3D Integrated Field Quality

1. There are less than 1 unit changes in integrated field homogeneity at radius 5 mm because of iron saturation effects.

2. Total allowed high order harmonics less than 5.5 units at R=5mm and caused by magnet ends.

Magnet end plate provides effective shielding up to several Gauss of magnetic field at distance 60 mm from magnet end (400 mm from magnet center). Z=340 mm magnet end.

- Superconductor type NbTi well known technology and cost efficient at specified fields
- Small filament size < 5 um achievable to reduce superconductor magnetization effects
- Diameter 0.3-0.5 mm for currents <=100 A to reduce heat load from current leads and cables from power supply
- Cu:Sc ratio ~ 1.5-2 to provide safe quench protection
- RRR 50-100 to improve superconductor stability and quench parameters
- Efficient electrical insulation: polyimide, formvar, etc

Quadrupole critical parameters

-Magnetic center stability must be 5 μm at -20% strength change

- Low fringing fields:
 - $1\ \mu T$ during SCRF cooling down
 - 10 µT during SCRF operation
- •Possible issues:
- magnetic center motion (SC magnetization, Lorentz forces, mechanics, iron saturation and hysteresis, etc)

fringing field trapped in SCRF at cooling dowCalculated 2-4 µm magnetic center
 and operation substantially reduces Q - SCRF
 displacement in shell type quadrupole with
 dipole correctors placed between quadrupole
 coils and yoke because of NbTi superconductor

ILC Main Linac - KOF

magnetization

Superconductor magnetization effects

Magnetic center displacement at zero shell corrector current

Magnetic center displacement at zero shell corrector current and -20% gradient change

Racetrack corrector has low 2D magnetization effects

3D effects (end effects) should be investigated

September 27, 2007

ic

Quadrupole Load Line

Icoil/Ic = 100 A/175 A = 57 % of short sample limit

September 27, 2007

Quench Protection

ic

September 27, 2007

ILC Main Linac - KOF

Mechanical Stress Analysis

Coil bobbin used as mandrel for superconducting coil winding

Kapton film used as ground insulation between bobbin and wires

Bobbin and outer collar structure forms closed mold for epoxy vacuum impregnation

Easy assemble coil structure with an iron yoke

Coil attached to the pole on both ends

SC Coil after winding

SC Coil after collar welding and epoxy impregnation (ready to install)

September 27, 2007

ILC Main Linac - KOF

Dipole Correctors

Shell type dipole field homogeneity

Racetrack type dipole field at zero quadrupole field

Shell type dipole field homogeneity at 61 T/m gradient and 0.166 T vertical dipole field

Racetrack type dipole field homogeneity at 61 T/m gradient and 0.125 T vertical dipole field

September 27, 2007

.

1. Quadrupole test using VMTF (Stand busy with LARP model tests)

Field measurements by rotational coils. All probes and systems exist. This is the quickest way. There should be pair current leads for quadrupole and two pairs for dipole correctors.

2. Quadrupole test using Stand 3

Field measurements using flat board dipole coils. Needs probes and stand upgrade. Stand is good for test quadrupole general parameters: currents, training, correctors, etc.

- 3. Quadrupole test at 4.2K using Tevatron test stand. Needs cryostat. Main advantage is possibility to use stretch wire technique. Cryostat from Low-Beta Quadrupole may be an option.
- 4. Tests using Stand 4. Main advantage is possibility for tests at 2 K LHe temperature with stretch wire technique.

- 1. Quadrupole magnetic center stability during -20% gradient decrease. Should be measured at different gradient levels in range of gradients of 2-100%.
- 2. Magnetic center stability as in 1. at different trim coils currents.
- 3. Long term magnetic center stability at DC current for different field levels.
- 4. Field quality at 5 mm reference radius for strait section and whole length at different quadrupole and trim coils currents.
- 5. Fringing field at some distance (~100mm) from magnet end
- 6. Peak current at quench.
- 7. Efficiency of quench protection system.
- 8. Coil maximum temperature after the quench.
- 9. Quadrupole cooling down time and time recovery after the quench.
- **10. Effective RRR.**
- 11. Residual magnetic field at zero currents.

Quadrupole model status

- The ILC ML Quadrupole cold mass is designed.
- The first quadrupole model fabrication is in progress.

• In proposed magnet configuration special attention paid on providing better magnetic center stability. For that used very small filament size superconductor, superferric yoke configuration, racetrack coils in stainless steel container.

• Two options of correction coils under consideration: racetrack or shell types trim coils

• Magnetic and mechanical analysis were performed. Magnet pole, coil geometry optimized for better integrated field quality. End shields designed to reduce fringing fields.

- Proposed quench protection scenario with external dump resistor and coil heaters.
- Proposed cost effective magnet manufacturing technique based on FNAL experience.

Nevertheless it should be noted:

This is an experimental magnet and designed to be flexible for various modifications: coil change, yoke disassembly, removable correction coils, etc.

Nobody at that time investigated a superconducting quadrupole center stability with micron accuracy.

Quadrupole package between cryomodules

Cons:

ĪĪĻ

- More connections and higher tunnel installation cost

Pros:

- Cryomodules and Quadrupoles having different specs and performance are decoupled
- Cryomodules could be identical
- Manufacturing, assembly and test lines are independent
- Independent design, prototyping and tests Could be different (higher) temperature and lower corresponding cryoload
- Lower influence of fringing fields from magnets and current leads
- Feed boxes decoupled from Cryomodule
- Lower quadrupole vibrations
- Higher accuracy of quadrupole positioning
- Easy mechanical position adjustment and long term space stability
- Easy replacement
- Lower fabrication and assembly cost

Quadrupole package R&D and EDR goals

- Design and fabricate the quadrupole models of high and low gradient versions acceptable also for RTML
- Upgrade Stand 4 for quadrupole tests at 2 K using stretch wire technique
- On the base of test results:
 - prove the quadrupole design, manufacturing technology and performance
 - make decision about combined or stand alone correctors
- Design and build the quadrupole package placed between cryomodules
- Design and built for Main Linac quadrupole package:
 - current leads
 - power supplies
 - quench detection system
 - instrumentation system
- Test the stand alone package magnetic and mechanical performance
- Assemble and test the ML Quadrupole package prototype
- Write Quadrupole package EDR section including full set of drawings, test results and cost estimation

Quadrupole package WBS

					1. A. A.			-						-		
	Α	В	С	D	E	FG	H	Ι	J	K	ĻΜ	N	0	Р	Q	F S
1		<u>FY08</u>	3-09	WBS x.7 ML: Optics, Be	/BS x.7 ML: Optics, Beam dynamics, Instrumenta						on					
3						FY08	FY08	EY0	EY0	FY08	EY09	EY09	FY09	EY09	FY09	Comments
4						Labor	Dire	Dire	Tota	Total	Lahor	Direct	irect	Total	Total	
5	WBS	WBS	VBS/WD	Description	Lab ETE Labe M% Indirect			ETE	Lahor	M&S	lirect					
6	1100	1100	100(111	Description	LUD		K\$	K\$	k\$	k\$		κ\$	K\$	k\$	k\$	
	27			Acc. Design		-	īτφ	īτφ	Kφ	NΨ	_	īτφ	īτφ	Kφ	1.4	
	2.7	271		Linac heamline design												
10		2.7.1	2711	Engineered ML lattice design	ENAL	1.00	131	Ο	40	180	1.00	138	0	52	190	
11		272	2.7.1.1	Wakefields	TIMAL	1.00	101	0	72	100	1.00	150	- 0	52	190	
12		2.7.2	2721	Wakefields studies at SLAC	SLAC	2.00	280	Ο	87	367	2 20	319	Ο	qq	418	
13			2722	Wakefields studies at ENAL	FNAL	0.50	66	0	25	907	1 00	138	0	52	190	
14		2.7.3	2171212	Acc. Physics	1005	0.00	00	5	20		1.00	130	- 0	52	170	
15		2.17.0	2.7.3.1	ML Accelerator physics at FNAL	FNAL	2.00	262	0	98	360	3.00	414	0	155	569	Partial descope
16			2.7.3.2	ML Accelerator physics at SLAC	SLAC	0.50	70	0	22	92	0.50	73	0	22	95	
17			2.7.3.3	RTML Emitance preserv study	SLAC	0.50	70	0	22	92	0.75	109	0	34	142	
18			2.7.3.4	RTML Emitance tuning LEPP	LEPP	1.00	68	3	38	109	1.00	70	3	39	112	Added GD
19			2.7.3.5	Start-to-end simulations FNAL	FNAL	0.75	98	0	37	135	1.00	138	0	52	190	
20			2.7.3.6	Start-to-end simulations SLAC	SLAC	0.50	70	0	22	92	0.75	109	0	34	142	Adeded PT
21			2.7.3.7	Dark current and MPS	FNAL	0.00	0	0	0	0	0.35	48	0	18	66	Defer to 09
22			2.7.3.8	Code and comp capability devlpm	FNAL	0.50	66	30	29	125	0.50	69	30	31	130	
23			2.7.3.9	Acc. codes development	SLAC	0.25	35	0	11	46	0.75	109	0	34	142	
24		2.7.4		Alignment, vibration												
25			2.7.4.1	Alignment and vibration studies	FNAL	0.25	33	30	17	80	0.35	48	40	25	113	
26			2.7.4.2	Slow ground motion/seismic	FNAL	0.00	0	0	0	0	0.40	55	40	27	122	Defer to FY09
27		2.7.5		Quad package design												
			2.7.5.1	ML quadrupole and corrector desigr	FNAL	0.50	66	0	25	90	0.25	35	0	13	47	
2																
3	3.7			Main Linac R&D												
3		3.7.1		Quad package												
			3.7.1.1	SC Quad prototype and tests	FNAL	1.25	164	40	68	272	1.80	248	80	106	434	
3.			3.7.1.2	SC Corrector prototype and tests	FNAL	1.00	131	30	54	215	0.80	100	37	43	180	
34		3.7.2		Cold BPM												
35			3.7.2.1	L-band BPM design and test	FNAL	1.00	131	50	57	238	1.40	193	110	90	393	
36			3.7.2.2	S-band BPM test in CM	SLAC	0.25	35	10	12	57	0.50	73	40	28	141	ļ
37																
3	5.7			Facilities and Infrastructure												
3		5.7.1		Test Stands												
4			5.7.1.1	Tev Test Stand upgrade for SC qua	FNAL	0.70	92	75	46	213	0.75	104	100	55	258	
4			5.7.1.2	SSW system upgrade for Quad mea	FNAL	0.00	0	0	0	0	0.20	28	50	18	96	Defer to FY09
42	42 Overall total					14.45				2852	19.25				4172	

September 27, 2007