High Level RF Power (HLRF) Cost Estimate

Prepared for HLRF EDR Kickoff Meeting October 1-3, 2007, SLAC Webex *Ray Larsen* Stanford Linear Accelerator Center For the ILC HLRF Collaboration

HLRF Collaboration

- Team Leaders for Cost Estimating
 - S. Fukuda, KEK, Asia, Spokesperson
 - R. Larsen, SLAC, Americas
- Participants:
 - KEK: T. Shidara, M. Akemoto
 - SLAC: M. Neubauer, C. Nantista, C. Adolphsen, R. Cassel, C. Corvin
 - FNAL: C. Jensen, B. Chase, O. Nezhevenko, J. Reid, M. Champion, P. Garbincius
 - DESY: W. Bialowons

Outline

- I. Summary Paris Cost Presentation
- II. Cost Results
- **III. ACD Cost Estimates**
- IV. Conclusions
- Appendix: Cost Estimate Details

1. System Overview

- HLRF Station Types
 - Main Linac, Sources & RTML (646)
 - Damping Rings (20)
- Details will focus on ML Station since over 90% of total HLRF cost
- All of RF comprises ~12% of Total Project Cost (TPC)

Main Linac Block Diagram

Damping Ring Block Diagram

1 of 20 Stations

October 1-3, 2007

Baseline Modulator

Capacitor Banks

IGBT Redundant Switch

October 1-3, 2007

HLRF KOM Cost Estimate R. Larsen SLAC Bouncer Choke Courtesy C. Jensen, FNAL

Klystron Model Basis

Waveguide Distribution

October 1-3, 2007

Schedule Assumptions

- 7 Year Construction Period
- 2.5 Years Pre-production, 4.5 Years Production
- HLRF Manufacturing Models stress JIT delivery with minimum on-site storage prior to Installation
- Described in HLRF TN 2006-1, Factory, Staging & Installation
 Models, and HLRF TN 2006-2: ILC High Level RF Cost
 Assumptions, Rev. July 7 2006
- Modulators & Klystrons delivered tested, ready to inspect, prep and install
- Distribution delivered as complete subassembly, ready to inspect, mount on cryomodule in staging area, pre-tune and install
- Two vendors for each component w/ multiple production lines, extra capacity strategy to maintain schedule (e.g. extra line, extra shifts)

October 1-3, 2007

Cost Methodologies

- Modulator
 - First Unit basis: Engineering bottom-up from existing advanced prototypes
 - Production basis: Estimates from (a) Engineering "Rules of Thumb" (FNAL), (b) Learning curves from first article cost (SLAC); Industry quotes from DESY, KEK
- Klystron
 - First unit basis: Bottom-up estimates of materials, labor to fabricate by resident former industry expert (M. Neubauer)
 - Production basis: Full cost recovery plus profit, sustaining follow-on business Factory model developed from NLC study by SLAC klystron industry experts (J. Cornuelle, G. Caryotakis, M. Neubauer
 - Learning curves using published factory experience to select ratios, rates for materials, labor
 - Industry quotes from DESY, KEK

October 1-3, 2007

Methodologies 2

- Waveguide Distribution
 - First unit basis: (a) Engineering bottom-up estimate by (former industry) expert based on materials and labor models (b) Manufacturer quotations (2-3 small suppliers)
 - Production basis: (a) Engineering bottom-up material, labor estimates from basic engineering models, discussions with vendors in other regions, (b) Learning curves based on models of automated machining and hand-machining processes for relative labor content, costs (c) industry quotes from KEK, DESY

October 1-3, 2007

II. Cost Results

ML RF System Costs by Area

🔳 Main Linacs 🔳 e-e+sources 🗔 RTML 📕 Damping Rings

October 1-3, 2007

RF Subsystem Cost Breakdown

Modulator Distibution Klystron Infrastructure

Modulator Subsystem

Klystron Subsystem

Klystron & solenoid

- Controls-Interlock Protection- Diagnostics
- Filament, Solenoid, Vacuum Pumps PS
- Socket- Tank- Filament Isolation XFMR

RF Pre-driver

October 1-3, 2007

Distribution Subsystem

Regional Cost Estimates

III. ACD Cost Estimates

October 1-3, 2007

LC Americas Region

- Other ACD's
 - 6-Pack HA
 Charger
 - Interlocks & Controls HA FPGA based

HLRF KOM Cost Estimate R. Larsen SLAC

October 1-3, 2007

Americas Region

HLRF ACD Justification

- Must demonstrate significant cost savings, needed performance improvements or both
 - Marx modulator, SBK klystron and circulator-less integrated Power Distribution all promise potential cost reductions ~2x as well as technical benefits (e.g. smaller, lighter, higher efficiency, availability)
- ACD estimates not yet verified through complete prototypes or industry quotes
 - Marx estimate based on first prototype parts count; needs reverification since becoming near-operational
 - Marx entering DFM phase in order to fit into tunnel; new cost estimate needed when initial design complete
 - SBK based on SLAC KD bottom-up estimate before first prototype
 - Distribution estimated by considering parts eliminated from BCD by redesign; needs new bottom-up

October 1-3, 2007

Americas Region

Other ACD Initiatives

- Modulator Charger System
 - Proposed new 6-Pack high availability system (R. Cassel)
 - Solves important technical issue of pulse loading harmonic interference on power mains
 - Bottom-up cost estimate shows modest reduction
 - Proposed to build prototype in FY09 for L-Band TF
- M-K Interlocks & Controls
 - Proposed new I&C system based on HA architecture, FPGA fail-safe design
 - Significant reduction of hardware cost; can coexist within ATCA-like modular control system
 - Proposed to demonstrate initial prototype in FY08 for TF

October 1-3, 2007

LC Americas Region

IV. Conclusions

- HLRF BCD cost estimates comprehensive, satisfied Paris review team
 - Review team endorsed strong ACD efforts as main opportunity for significant cost reductions
- Initial ACD estimates promising but immature
 - Need operational prototypes to prove anticipated performance, improvements, develop more reliable cost models
 - Modified DFM designs will need new estimates
 - Until demonstrated and re-estimated, cost risk of all ACD estimates remains high.
- ACD demonstrations time-critical to meet downselect goals by or shortly after EDR period

End of Slides

October 1-3, 2007

Appendix: Cost Estimate Details

October 1-3, 2007

Cost Estimating Rules

- Estimates include:
 - Engineering, Design & Inspection person-power (Py) estimates for Pre- and Construction periods
 - No monetary value assigned to Labor
 - Materials and labor costs for industrial production
 - Monetary value assigned based on estimates from Americas, Asia & Europe
- Not included: Contingency or escalation
 - Applied globally by Cost Engineering Group

LC Americas Region

Factory, Staging & Installation Models

*Document HLRF TN 2006-1: *Factory, Staging & Installation Models*

- 1. 10 MW RF Stations Klystron
 - a. Klystron Factory Model
 - b. Klystron On-Site Storage, Test & Staging
 - c. Klystron Installation (Costs not included in HLRF)
- 2. 10 MW RF Stations Modulator (Charger, Switch, Pulse Transformer, Local Controls)
 - a. Modulator Factory Model
 - b. Modulator On-Site Storage, Test & Staging
 - c. Modulator Installation
- 3. 10 MW RF Stations Waveguide Distribution (WGD)
 - a. WGD Cryomodule Subassembly Factory Model
 - b. Klystron Mixers & Splitters Subassembly
 - c. Penetration Waveguide
 - d. WGD On-Site Storage, Mounting, Test & Staging
 - e. WGD Installation
- 4. 10 MW RF Stations Integrated Controls, Interlocks, Protection
 - a. PLC System
 - b. PLC Staging System
 - c. PLC Installation
- 5. 10 MW RF Stations Infrastructure & Racks
 - a. Distribution transformers, conduit, breakers
 - b. Cabling, plumbing supplies
 - c. Racks, COTS water-cooled
 - d. Infrastructure installation
- 6. Damping Ring RF Stations Klystrons
- 7. DR HV Power Supplies
- 8. DR WGD
- 9. DR LLRF & Feedback (Costs not included in HLRF)
- 10. DR Integrated Controls, Interlocks, Protection
- 11. DR Infrastructure & Racks
- 12. RF Stations Room Temperature Cavities
- 13. RTML RF Stations S-Band

October 1-3, 2007

- 14. Miscellaneous RF Requirements
 - R. Larsen SLAC

* Factory Models all RF components *Main Linacs, Sources, RTML & Damping Ring RF Stations Americas Region

Pre- & Constr'n Period Support, Costs

• Document HLRF TN 2006-2: <u>*High Level RF Cost Assumptions*</u>

* Assumptions for schedule, estimates ED&I** Labor (Py), Workspace (m sq), cost of test systems for factory support, Pre- Construction & Construction Phases

Index

- **1. Basic Assumptions**
- 2. Manufacturing Models
- 3. Cost Models
 - a. Main Linac System
 - i. Klystron
 - ii Modulator
 - iii Distribution System
 - iv. Controls Interlocks Protection
 - v. Infrastructure
 - **b. Electron & Positron Sources**
 - c. Ring-to-Main Linac (RTML)
 - d. Electron & Positron Damping Rings
 - e. Beam Delivery System
- 4. Pre-Production Period Personnel Requirements
 - a. Project Planning Engineering
 - b. On-Site Engineering to Work with Vendors
 - c. On-Site Engineering for Production Test Systems
- **5. Production Period Personnel Requirements**
 - a. Factory Support Personnel for QA
 - **b. On-Site Project Support**
 - c. System Integration & Testing
- 6. Personnel Summary
 - **Tables of Manpower Summaries**
 - 1: Pre-Production and Production Period Py Estimates
 - 2. Area Pro-rated Sustaining Engineering, Installation & Test Py
 - 3. Py by Area & Skill Type
 - 4. Py by Generic Categories

HLRF KOM Cost Estimate R. Larsen SLAC

**ED&I=Engineering, Design & Inspection

October 1-3, 2007

Comprehensive Cost Details

- Engineering, Design & Inspection (ED&I) Py from end EDR R&D period forward to final commissioning
 - Documentation, supervision of bid packages for delivery of tested klystrons, modulators and integrated distribution assemblies
 - Support of factory testing, test systems
 - Factory verification of testing, acceptance to ship
 - Onsite final assembly area development, supervision, management
 - Systems engineering & documentation for production, final assembly,
 - Engineering team development, support of final integration & commissioning in tunnels
 - Sustaining Engineering, tech maintenance of tested systems during commissioning

Cost Details 2

- M&S
 - Purchase tested major components (Klystrons, Modulators, Distribution Controls and Protection)
 - Purchase infrastructure electrical, cables, plumbing & rack materials)
 - Purchase, develop factory test stations for major assemblies
 - Handling and test equipment for on-site assembly areas, commissioning in tunnels
- Other
 - Administrative support for management teams (Py)
 - Floor space estimates for on-site assembly, staging (sq m)

Factory Model Details - Klystron

- Klystron
 - Assumed Factory Model is that new capacity must be funded as part of construction cost of ILC quantities
 - Model based on work by J. Cornuelle for USLCTOS but refined by M.
 Neubauer based on recent design experience of vendors
 - Cornuelle and Neubauer have many years engineering and management experience in klystron industry
 - Factory model assumes higher early unit costs to recover investment costs of factory capacity, with unit costs decreasing as recovery completed
 - Profit and labor overheads fully included based on current vendor practice
 - Model yields fully loaded average Acquisition cost per unit
- On-Site Costs
 - Model assumes pre-testing at factory and on-site inspections for shipping damage prior to installation in tunnels
 - FTE's etc. for 5 Horsemen estimated separately
 October 1-3, 2007
 HLRF KOM Cost Estimate
 R. Larsen SLAC

Klystron Tube Model Details

Parts
and
Labor

VACUUM ENVELOPE ASSEMBLY: **RAW MATERIALS BRAZE ALLOY** ELECTRON GUN ASSEMBLY **BODY ASSEMBLY** WAVEGUIDES/WINDOWS COLLECTOR PARTS AND MATERIAL SUBTOTAL LABOR HRS LABOR COST SUBTOTAL EXHAUST: LABOR HRS LABOR COST SUBTOTAL FINAL ASSEMBLY: MAGNET ASSEMBLIES LABOR HRS LABOR COST SUBTOTAL TEST: LABOR HRS LABOR COST SUBTOTAL YIELDED PARTS AND MATERIALS YIELDED LABOR HOURS YIELDED LABOR COST ENGINEERING FTE'S ENGINEERING LABOR HOURS PER TUBE ENGINEERING LABOR COST PER TUBE

October 1-3, 2007

HLRF KOM Cost Estimate R. Larsen SLAC

Equipment

PLANT COSTS
SQ FT PER EXHAUST STATION
SQ FT PER TEST STATION
BASE CRANE SPACE
SQ FT OF CLEAN RM /100 TUBES/YR
BASE GENERAL SPACE
SQ FT OF GEN SPACE /100 TUBES/YR
GEN'L SPACE SQ. FT.
CLEAN-RM SQ. FT.
CRANE SPACE SQ. FT.
TOTAL SQ. FT.
GEN'L SPACE COST PER SQ. FT.
CLEAN-RM COST PER SQ. FT.
CRANE SPACE COST PER SQ. FT.
TOTAL PLANT COST

TOTAL COST, PLANT AND EQUIPMENT

ANNUAL LEASE COST

Difficulty Factors

COST/LEARNING FACTORS RAW MATERIALS PURCHASED PARTS LABOR **COSTING QUANTITY YIELD FACTORS** VACUUM ASSEMBLY BAKEOUT TEST TOTAL EQUIPMENT UTILIZATION EXHAUST TIME (HRS) **TUBES/STATION TEST TIME (HRS)**

RF Distribution Model Details

- Waveguide, Hybrids, Circulators, 3-Stub Tuners
 - Pre-Snowmass estimates done very roughly from incomplete set of vendor catalog costs
 - New estimates made by Neubauer in bottom-up models
 - Circulator for every cavity is most expensive item
 - Cost model includes materials cost estimates, machining and brazing or welding costs
 - Other units optimized to minimize numbers of flanges
 - Unit costs and learning curves applied to get totals
- Vendor Comparables
 - Where possible vendor quotes obtained for similar units from two companies in US and two companies in Japan.

Modulator Learning Curve Sensitivity Variable Qty, #Vendors, Alpha Labor

Modulator LC Sensitivity Variable Lot Size, 1 or 2 Vendors

R. Larsen SLAC

Klystron LC c.f. Industry

"Learning Curve Components" for an 88% curve fit to the Klystron Factory Model

LC Americas Region

Appendix: Cost Details

High Volume Manufacturing

Vormalized Factory Cost

VKS-7964M: breaking the Exhaust bottleneck Example

A multi-port exhaust manifold was used

DFA/DFM methodology critical to our success; 83% learning curve realized

Delivery was as high as 12 per week, however we were asked to reduce to 10 per week due to Amplifier manufacturing constraints

1.4 83% Learning Curve 1.2 Monthly Average Cost Average Unit Cost 1.0 0.8 $\overline{C}(N) = C(1) \cdot L^{\log(2)}$ Costs increased when rate was reduced 0.6 0.4 0.2 Lowest cost at max Ω production rate 120 140 100 Units Produced

> HLRF KOM Cost Estimate R. Larsen SLAC

Snowmass 2005 "RF source selection for the ILC" Wright, Bohlen, Lenci, Balkcum

250 units produced

Insist on the original...

October 1-3, 2007

Pre-Construction & Construction Period Onsite Engineering & Labor

Area	Area Fraction	Engineer	Engineer-	Engineer-	Engineer- QA	Tech-	Tech	Tech	
		Project/	Elect, RF	SWE	Testing	Elec/RF/	Drafting/	Admin	
		Supervisory	,		U	Rigger	Layout		Pre-Production
									Period P-yrs by
									Area
Pre-Production		6	20	8	0	13	12	12	71
Period Totals (FTE)									
2.5 Year Totals		15	50	20		32.5	30	30	177.5
Main Linacs	0.83	12.5	41.7	16.7		27.1	25.0	25.0	148.0
e- Source	0.02	0.3	1.0	0.4	0.0	0.7	0.6	0.6	3.6
e+ Source	0.05	0.8	2.5	1.0	0.0	1.6	1.5	1.5	8.9
RTML	0.06	1.0	3.2	1.3	0.0	2.1	1.9	1.9	11.4
Damping Rings	0.03	0.5	1.6	0.6	0.0	1.0	1.0	1.0	5.7
									Pre-Production Period P-yrs by Area
Production Period Totals (FTE)		14	17	9	17	37		15	109
4.5 Year Totals		63	76.5	40.5	76.5	166.5	0	67.5	490.5
Main Linacs	0.83	52.3	63.5	33.6	63.5	138.2	0.0	56.0	407.1
e- Source	0.02	1.3	1.5	0.8	1.5	3.3	0.0	1.4	9.8
e+ Source	0.05	3.2	3.8	2.0	3.8	8.3	0.0	3.4	24.5
RTML	0.06	3.8	4.6	2.4	4.6	10.0	0.0	4.1	29.4
Damping Rings	0.03	1.9	2.3	1.2	2.3	5.0	0.0	2.0	14.7
Total P-Yrs									668

	Pre-Production	n 2.5 Yrs	Production 4.5 Yrs				Totals	Ру	7 Yrs	
	Engineers Py	Techs Py	Admins Py		Engineers Py	Techs Py	Admins Py			
Area	Total	Total	Total	Area	Total	Total	Total	Engrs	Techs	Admins
Main Linacs	70.9	52.1	25.0	Main Linacs	212.9	138.2	56.0	283.8	190.3	81.0
e- Source	1.7	1.3	0.6	e- Source	5.1	3.3	1.4	6.8	4.6	2.0
e+ Source	4.3	3.1	1.5	e+ Source	12.8	8.3	3.4	17.1	11.5	4.9
RTML	5.4	4.0	1.9	RTML	15.4	10.0	4.1	20.8	14.0	6.0
Damping Rings				Damping						
	2.7	2.0	1.0	Rings	7.7	5.0	2.0	10.4	7.0	3.0

October 1-3, 2007

Cost Risk Table

	А	В	С	D	E	F	G	Н		J	K	L
2	2 HLRF % RISK ASSESSMENT SUMMARY											
3												
4			DESIGN		TECHNICA	AL .	COST		SCHEDULE		TOTALS	
5			min	max	min	max	min	max	min	max	min	max
6	ITEM											
7												
8	ML 10 MW KLYSTRON		0	0	40	80	8	16	8	8	56	104
9												
10	ML RF DISTRIBUTION		0	0	2	4	3	6	8	8	13	18
11												
12	ML MODULATOR		0	0	4	8	4	8	8	8	16	24
13												
14	DR KLYSTRON		0	0	4	8	3	6	8	8	15	22
15												
16	DR HV POWER SUPPLY		0	0	4	8	4	8	8	8	16	24
17												
18												

Pre & Production Total ED&I, Admin

Task	Engineer Project/	Engineer-	Engineer-	Engineer-	Tech-	Tech Drofting/	Tech Admin	Total
	Supervisory	Liect, Kr	SWE	QA Testing	Rigger	Layout	Aumm	
4a.	6	3					6	15
4b.		10	3		7	7	4	31
4c.		7	5		6	5	2	25
Pre-	6	20	8		13	12	12	71
Production								
Period								
Totals								
4a.	6	3					6	15
5a.				6	3			9
5b.	5	7	7	8	10/6		6	49
5c.	3	7	2	3	18		3	36
Production	14	17	9	17	37		15	109
Period								
Totals								
	•	•	•	•	•	•	•	

ED&I Labor Area Allocation

Area	No. Stations (755 All Types)	Fraction Total
Main Linacs	630	0.834
e- Source	15	0.02
e+ Source	38	0.05
RTML	48	0.064
Damping Rings	24	0.032

Area Totals by Py & Type

Area	Area	Engineer	Engineer-	Engineer-	Engineer-	Tech-	Tech	Tech	
	Fraction	Project/	Elect, RF	SWE	QA	Elec/RF/	Drafting/	Admin	Pre-Production
		Supervisory		l I	Testing	Rigger	Layout		Period P-yrs by
									Area
Pre-Production		6	20	8	0	13	12	12	71
Period Totals				ĺ					
(FTE)				ļ	ļ	L			
2.5 Year Totals		15	50	20		32.5	30	30	177.5
Main Linacs	0.83	12.5	41.7	16.7		27.1	25.0	25.0	148.0
e- Source	0.02	0.3	1.0	0.4	0.0	0.7	0.6	0.6	3.6
e+ Source	0.05	0.8	2.5	1.0	0.0	1.6	1.5	1.5	8.9
RTML	0.06	1.0	3.2	1.3	0.0	2.1	1.9	1.9	11.4
Damping Rings	0.03	0.5	1.6	0.6	0.0	1.0	1.0	1.0	5.7
									Pre-Production
				1					Period P-yrs by
				1					Area
Production		14	17	9	17	37		15	109
Period Totals				l I					
(FTE)									
4.5 Year Totals		63	76.5	40.5	76.5	166.5	0	67.5	490.5
Main Linacs	0.83	52.3	63.5	33.6	63.5	138.2	0.0	56.0	407.1
e- Source	0.02	1.3	1.5	0.8	1.5	3.3	0.0	1.4	9.8
e+ Source	0.05	3.2	3.8	2.0	3.8	8.3	0.0	3.4	24.5
RTML	0.06	3.8	4.6	2.4	4.6	10.0	0.0	4.1	29.4
Damping Rings	0.03	1.9	2.3	1.2	2.3	5.0	0.0	2.0	14.7
Total P-Yrs									668

Table 3: Py by Area and Type

Pre & Construction Period Py Totals by Area & Category

	Pre-Productio	on 2.5 Yrs	Production 4.5 Yrs				
Area	Engineers Py Total	Techs Py Total	Admins Py Total	Area	Engineers Py Total	Techs Py Total	Admins Py Total
Main				Main			
Linacs	70.9	52.1	25.0	Linacs	212.9	138.2	56.0
e- Source	1.7	1.3	0.6	e- Source	5.1	3.3	1.4
e+ Source	4.3	3.1	1.5	e+ Source	12.8	8.3	3.4
RTML	5.4	4.0	1.9	RTML	15.4	10.0	4.1
Damping				Damping			
Rings	2.7	2.0	1.0	Rings	7.7	5.0	2.0

Table 4: Py by Generic Categories