HLRF EDR Management Work Packages

Prepared for HLRF EDR Kickoff Meeting October 1-3, 2007, SLAC Webex *Ray Larsen* Stanford Linear Accelerator Center For the ILC HLRF Collaboration

EDR Phase Assumptions

- Engineering Design Report to be completed in 2010
 - Will include detailed technical, cost plans considerably more mature than RDR.
 - Will include project schedule, funding profile consistent with plans.
 - Will be sufficiently mature to provide a basis for international funding requests, implying
 - technology down-selects already in hand or close
 - Industry collaboration underway
 - New project plans, budget estimates, schedules in hand

EDR Challenge

- EDR definition implies that interim 08-10 period must be sufficiently staffed, funded to achieve "EDR Readiness" by 2010.
- Requires leadership, strong contributions and collaboration from all Regions
- Requires active involvement of industrial partners
- Building inter-regional and lab-industry collaboration through Work Packages critical to meeting EDR goals.

LC International Linear Collider

Definitions: Management & R&D WP's

- Two Task Categories for each WP
 - 1. EDR WP Management:
 - Subsystem Engineering leaders perform following tasks:
 - 1. R&D & Overall Project Plans
 - 2. Cost Analysis & Schedules
 - 3. Manufacturing & Installation Models
 - 4. Develop EDR Report
 - 5. Develop Bid Packages for all Regions (w/R&D)
 - 6. Build-to-print for first ACD's
 - 7. Recommend down-selection (or not)
 - 2. R&D WP ACD Prototypes:
 - Organize collaboration, design, build, test prototypes
 - Documentation for Build-to-Print, Specifications
 - Develop Vendors via prototype procurement
 - Assist Bid Package development. Industry liaison

Management WP Goals

- Develop plans to transition all ACD R&D prototypes to first industry articles
 - SBK, Marx, Distribution, Charger, I&C
- Challenges
 - Involving inter-regional collaborators in R&D phase
 - Involving industrial partners in R&D phase
 - Developing business models for first industrial procurements of finished articles
 - Proprietary technology, licensing issues
 - Increasing Regional support
 - Transition from small R&D partner companies to large-scale production companies

Management WP Strategy

- Identify work packages that could:
 - Use more participants on existing programs who would come with institutional support
 - Farm out WP's to other regions to be integrated into higher-level WP effort, Regions providing new manpower, materiel support
 - Position ILC to let bids for first commercial prototypes of major HLRF assemblies in 2009-10 timeframe.
 - Implies ILC ownership of Build-to-Print designs

HLRF Component Work Packages

ACD System	Mgmt WP	R&D WP
Klystron SBK	1	1
Marx Prototype	1	1
Marx DFM	1	1
Power Distribution	1	1
Charger PSS	1	1
Interlocks & Controls	1	1

Oct 1-3, 2007

International Linear Collider

Example *Management* Work Packages - Marx

	High Level RF Work Packages	2006	2007	2008	2009	2010	2011	2012	2013	2019
		RDR	EDR			Арр	roval	Constr	Commiss.	
1	EDR Work Packages									
	Marx Modulator									
	Complete 08-09 Work Packages		•							
	Down-select technology			•						
	Prepare bid packages for 3 Regions			•						
	Place factory orders in 3 Regions			•						
	Receive units in 3 Regions				•					
	Implement Test Stands 3 Regions				•					
	Test Stand operation 3 Regions									
2	R&D Work packages									
	Marx Modulator									
	Complete prototype power test			•						
	Complete DFM design			•						
	Complete DFM Prototype			•						
	Implement DFM Prototpe on Test Stand				♦					

Oct 1-3, 2007

HLRF KOM EDR Mgmt WP's

Mgmt WP Schedule Example Marx

ID		Task Name	Duration	Start	Finish	2007				2008			2009			
	0					Qtr 1	Qtr 2	Qtr 3	Qtr 4	Qtr 1	Qtr 2 Qtr	3 Qtr 4	Qtr 1	Qtr 2 C	<u>ttr 3 Qt</u>	tr 4
1		EDR WORK PACKAGES - HA ELECTRONICS	705 days	Wed 6/27/07	Tue 3/9/10											
2																
3		E1. Magnet Power Supplies & Controller Systems	558 days	Wed 6/27/07	Fri 8/14/09			4							\sim	
4		E1.1 EDR Management Power Supply Systems	558 days	Wed 6/27/07	Fri 8/14/09			2							\sim	
5		E1.1.1 Develop R&D & Overall Project Plans	558 days	Wed 6/27/07	Fri 8/14/09			/							\sim	
35		E1.2 EDR R&D Power Supply Systems	558 days	Wed 6/27/07	Fri 8/14/09										\sim	
50		E2. Marx Modulator ACD (Alternate Conceptual Design)	705 days	Wed 6/27/07	Tue 3/9/10			/								
51		E2.1 EDR Management Marx	498 days	Wed 6/27/07	Fri 5/22/09									\sim		
52		E2.1.1 Revise Marx R&D Plan, cost, schedule for EDR Phase	30 days	Wed 6/27/07	Tue 8/7/07	'										
53		E2.1.2 Requirements Document for DFM	30 days	Wed 8/8/07	Tue 9/18/07	1			L							
54		E2.1.3 Specifications Document for DFM	30 days	Wed 9/19/07	Tue 10/30/07	7			<u> </u>							
55		E2.1.4 Develop EMIC Plan, Cost & Schedule for Project	60 days	Mon 3/3/08	Fri 5/23/08	3										
56		E2.1.5 Develop Bid Packages for Industrial Prototypes	60 days	Wed 11/5/08	Tue 1/27/09	9										
57		E2.1.6 Develop EDR Report for Modulators	60 days	Mon 3/2/09	Fri 5/22/09	9						T				
58		E2.2 EDR R&D Marx Protoype 1 & DFM 1	705 days	Wed 6/27/07	lue 3/9/10			4								
59		E2.2.1 Complete, test Vernier pulse flattener Proto 1	30 days	Wed 6/27/07	Tue 8/7/07	7										
60		E2.2.2 Complete as sembly in enclosure Proto 1	20 days	Wed 8/8/07	Tue 9/4/07	'		լ հղ								
61		E2.2.3 Complete full power tests Proto 1	90 days	Wed 9/5/07	Tue 1/8/08	3		ļ								
62		E2.2.4 Complete design DFM Proto 2	120 days	Wed 9/5/07	Tue 2/19/08	3			/							
63		E2.2.5 Compete Construction DFM Proto 2	120 days	Wed 2/20/08	Tue 8/5/08	3										
64		E2.2.6 Commission DFM Proto 2	30 days	Wed 8/6/08	Tue 9/16/08	3					`	η				
65		E2.2.7 Install in Test Stand ESB DFM Proto 2	20 days	Wed 9/17/08	Tue 10/14/08	3						L				
66		E2.2.8 Documentation for DFM Bid Packages	30 days	Wed 10/15/08	Tue 11/25/08	3										
67		Bid Packages Ready DFM Industrial Protos	0 days	Tue 1/27/09	Tue 1/27/09	9							<u>∎</u> 1/2	7		
68		E2.2.9 Procure DFM Prototypes 3 Regions	250 days	Wed 1/28/09	Tue 1/12/10	D										
69		E2.2.10 Install in Test Stands, Commission	40 days	Wed 1/13/10	Tue 3/9/10	D										

Oct 1-3, 2007

HLRF KOM EDR Mgmt WP's

Example Collaboration Concept

Management Model •Joint teams may require co-location for some overlap period •Single lead managers optional also •Sub-projects in different regions include low level or high-level projects (e.g. Design a controller; Build a klystron or modulator with Regional industry

L C International Linear Collider

Industrialization

- Assume all major HLRF Units (Modulator, Klystron, distribution, Charger, Controls) will be provided by industry.
- Industrialization has two meanings:
 - 1. Development & deployment of industry process
 - For new designs of an exotic nature, e.g. SCRF structures, Sheet Beam Klystron
 - 2. Identification & qualification of vendors for new designs of non-exotic nature
 - Modulator, Charging System, Controls & Interlock
 Protection System

L International Linear Collider

ACD Industrial Procurement

- ILC is developing and will <u>own</u> designs from ACD process
- First article ACD procurements will be "Build-to-Print"
- Vendors may propose design improvements or to build to specification if proposed design meets approval
- Owning designs important for long term future:
 - Modulators, Distribution have virtually no follow-on business so future procurements could be problematical
 - Klystrons have significant follow-on business but much smaller; owning a design is excellent insurance against future vendor ability to deliver (e.g. PEPII experience)
- HLRF cost models assumed procurement split 50-50 between 2 vendors. (Actual ratios would vary.)

L International Linear Collider

Example WP's for Marx Production

International Linear Collider

Mgmt WP Summary Remarks

- Manager Requirements for Coordinating Major WP's:
 - EDR Leaders who can oversee both Management and R&D planning
 - R&D Leaders with basic tools of project management: Technical skills, project experience, estimating and scheduling tools, budget management, personnel management
 - Access to creative engineering and support talent
- WP Managers Required Framework:
 - Management protocols, methodology
 - WP Project Engineering disciplines
 - Project standards for reviews, documentation

- Clear lines of responsibility, oversight, reporting Oct 1-3, 2007 HLRF KOM EDR Mgmt WP's

END OF SLIDES

C International Linear Collider

Appendix

Additional Background Slides EDR & R&D WP Details

International Linear Collider

Criteria for Down-Selection

- HLRF ACD's aimed at improved performance (including HA) and significantly improved cost
- Performance Criteria for Marx ACD was selected to be 2000 hr test at full power into test load.
- Assume similar criteria for Sheet Beam Klystron driving test load
- By 2010 very limited test quantities will be available so down select in some cases may be made in 2010 or later.
- In these cases BCD option must be kept alive for insurance, but with minimal new development.

Example WBS/WP's - Marx

- E2. Marx Modulator Alternate Conceptual Design (ACD)
 - 2.1 EDR Management
 - 2.2 EDR R&D
 - 2.2.1 First Prototype
 - 2.2.2 DFM Prototype
- E.3 Marx Diagnostics
- E.4 Modulator Charger System
- E.5 M-K Interlocks & Controls

ILC International Linear Colli WBS/WP Marx Modulator

- E2. Marx Modulator Alternate Conceptual Design (ACD)
 - E2.1 EDR Management
 - Plan the First prototype and DFM prototype program through Fy2009
 - Secure resources of funds & engineering
 - Develop Requirements, Specifications for inclusion in bid packages
 - Oversee completion of full documentation suitable for Build-to-Print option
 - Develop Bid Packages & tailor to 3 regions as needed

LC International Linear WBS/WP Marx Modulator 2

- E2.2 EDR R&D Marx Modulator

- E2.2.1 Marx First Prototype (Work in Progress)
 - 2.2.1.1 Hardware
 - 2.2.1.2 Controls & Software
 - 2.2.1.3 On-Board Diagnostics
 - 2.2.1.4 Vernier Board (for flat top compensation)
 - 2.2.1.5 System Power Testing
 - 2.2.1.6 Packaging for service in ESB
 - 2.2.1.7 Complete all as-built documentation
- E2.2.2 Marx DFM (Work planned & partly funded but not started)
 - 2.2.2.1 Revise Hardware Design to fit Tunnel
 - 2.2.2.2 Controls & Software upgrade
 - 2.2.2.3 On-Board Diagnostics upgrade
 - 2.2.2.4 Vernier Board Upgrade
 - 2.2.2.5 Documentation for Bid Package
 - HLRF KOM EDR Mgmt WP's

- E3. Marx Diagnostic Processor
 - Work in Progress
 - Prototype units per each Marx Cell installed
 - Features: Gather diagnostics data including
 - Waveform capture & memory
 - Charging waveforms
 - Current & Voltage levels
 - DC trip set points for current, voltage
 - Module on-off status
 - Send data via fibers to Ground Station => IOC => Main Control
 - Use for maintenance planning to replace failed modules before Marx trips off and interrupts operation
 - Status: First prototype checked out, installed but on-board voltage, current probes not yet instrumented
 - Plan to compete on First Prototype in FY08
 - Plan advanced design for DFM unit in FY08
 - Note: Another Diagnostics Processor effort underway for HA power supplies, large bulk power supplies.

- E4 Marx Modulator Charger System
 - (New proposal)
 - Motivation:
 - Charger systems must be carefully designed to smooth out the high power pulsed loading, harmonics of high voltage AC lines
 - System with N+1 redundancy for high availability (HA) also very desirable
 - Method Proposed:
 - "6-Pack" design with central 80% supply and 20% trim supplies at each modulator
 - Central unit oversized 50% and switches added to permit feeding 3 units on either side in case of central unit failure
 - Meets harmonic content goals, HA goals
 - Status:
 - Conceptual design, preliminary bottom-up cost estimate complete
 - First phase funding planned in FY08, complete in 2009 (C. Adolphsen)

ILC Internation WBS/WPIM-K Interlocks & Controls

• E5 Modulator-Klystron Interlocks & Controls

- First prototype (Work in progress)
 - Fiber optic links to each Marx cell for controls, triggering, timing
 - Ethernet link from Ground Station inside Marx to nearest control system IOC.
- DFM (New proposal)
 - Develop interlocks and controls on HA standard platform (ATCA)
 - Perform interlock protection functions in FPGA module
 - Design all input and control channels to be testable
 - Build redundancy into safety systems

• Status

Oct 1-3, 2007

- Marx prototype complete but not interfaced to IOC
- DFM conceptual & packaging design in planning stages
- Proposed for 2008 Funding

Factory Model Assumptions

- Factory Models were developed for Modulators, Klystrons and Distribution for cost modeling in 2006. Assumptions:
 - Factories to provide fully tested units essentially ready for final prep and installation to tunnels
 - Factories to be provided with necessary test equipment, support personnel
 - ILC inspectors at factory sign off on testing before shipment allowed
 - Delivery to on-site staging area for nominal inspection that no damage occurred in shipping, plus final prep before releasing to installation

L International Linear Collider

Factory Models 2

• Further Assumptions:

- All components originally assumed built to specifications (electrical power, cooling, mechanical form factor, drive requirements, test procedures)
 - However for ACD's this seems impractical for early units
- Build to specification could come later in process, if designs approved
- Modulator factory provided with fully instrumented test stations, test loads
- Klystron factory provided with klystron test stations, RF driver system, water loads
- Integrated Distribution systems delivered packaged for quick final assembly, mounting on cryo-module in staging area for cold tuning prior to moving to tunnel

Production Phase Cost Estimate

- All industrialization models require support personnel and equipment
- Estimates of numbers and types of personnel were made for the entire procurement, installation and test models
- Resources of engineering, coordination, technical, administrative support were calculated as part of HLRF total cost estimate.
- Unit costs were then given to Areas for cost rollups per Area.
 - Only exception was cost of installation from staging areas into tunnels, made by Installation Group in separate budget.

International Linear Collider

Regional Resources

- Resource Issues
 - 1. Personnel:
 - 1. Besides defining work packages, need to define new participants from other regions
 - 2. EDR Management tasks can be more easily shared since do not require co-location
 - 3. Participation at R&D design level more difficult; requires more face-to-face time, design reviews, hands-on participation in testing etc.
 - 4. Co-location for planned periods highly desirable
 - 2. Funding:
 - 1. New participants need to come with funding from home institutions