SLAC ILC RF System R&D

Chris Adolphsen, SLAC Oct 1, 2007 – HLRF KOM

ILC Main Linac RF Unit (1 of 560)

PAC07 ILC/XFEL Presentations

Modulators				
	TUXC03	Design and Status of the XFEL RF System		
	WEPMS044	High Power Switch for the SMTF Modulator		
	THIBKI04	Developments of Long-pulse Klystron Modulator for the STF		
	TUOAC02	Development and Testing of the ILC Marx Modulator		
	THOBKI02	Marx Bank Technology for the ILC		
	WEPMN113	A High Voltage Hard Switch for the ILC		
	WEPMN073	A New Klystron Modulator for XFEL based on PSM Technology		
	WEPMS028	Converter-Modulator Design and Operations		
Klystrons				
	WEPMN013	Testing of 10 MW MBKs for the European X-ray FEL at DESY		
	THIBKI03	Klystron Development by TETD		
	WEPMS093	Grid-less IOT for Accelerator Applications		
	THIBKI01	RF Sources for the ILC		

ILC/XFEL Presentations (Cont.)

K	lystrons (cont)	
	WEPMN054	Electron Gun and Cavity Designs for High Power Gridded Tube
	THPAS063	Second Order Ruled Surfaces in Design of Sheet Beam Guns
	WEPMN119	High-Power Ribbon-Beam Klystron
RF Distribution		
	WEPMS043	An RF Waveguide Distribution System for the ILC Test Accelerator at Fermilab's NML
	MOPAN015	Compact Waveguide Distribution with Asymmetric Shunt Tees for the European XFEL
Power Couplers		
	WEPMN032	R&D Status of KEK High Gradient Cavity Package
	WEPMN027	Construction of the Baseline SC Cavity System for STF at KEK
	WEPMS017	High-Power Coupler Component Test Stand Status and Results
	WEPMS041	Multipacting Simulations of TTF-III Coupler Components
	WEPMS049	A Coaxial Coupling Scheme for the ILC SRF Cavity

Pulse Transformer Modulator (ILC Baseline)

New Pulse Transformer Modulator at FNAL with SLAC-Supplied Switch

Capacitor Banks

Bouncer Choke

SLAC Marx Modulator

Develop alternative Marx approach to reduce the cost, size and weight of the modulator (no oil-filled transformers) and to improve its efficiency, reliability and manufacturability.

MARX Prototype

MARX Waveform

with 8 cells (no venier) after upgrades for reliability

- 84 kV
- 140 A
- 1.5 ms
- 5 Hz
- 60 kW

Stangenes Marx Generator (for NATO Radar Systems)

DTI Marx Under Construction (Phase II SBIR)

ILC Modulator

- 120-150 kV, 120-150 A, 1.5 ms, 5 Hz Klystron Pulses
- ~ 750 Modulators Required
- Use Marx topology to beat the long pulse problem
 - Switch additional stages as pulse droops, maintain flattop with affordable size capacitor bank
 - Minimize Overall Size and Cost
- SBIR Goal
 - Design, build, deliver a fully functioning first article for evaluation & tube testing

Advantage of Marx for ILC COMPACT !!! ... LOW COST !!!

M. Kempkes

SNS High Voltage Converter Modulator at SLAC

DTI is building a 120 kV, 130 A IGBT Series Switch with a bouncer to be delivered to SLAC

L-Band Klystrons

Baseline: 10 MW Multi-Beam Klystrons (MBKs) with ~ 65% Efficiency: Being Developed by Three Tube Companies in Collaboration with DESY

SLAC/KEK to Recieve a Toshiba Tube this Month Do Long-Term Test at SLAC ESB with Marx

- First DESY Tube Operated750 hours, 80 % at full power
- Efficiency = 65 %, which meets design goal

Sheet Beam Klystron Development at SLAC

Why Sheet Beam ?

- Allows higher beam current (at a given beam voltage) while still maintaining low current density for efficiency
- Will be smaller and lighter than other options
- PPM focusing eliminates power required for solenoid

Beam Transport and RF

The elliptical beam is focused in a periodic permanent magnet stack that is interspersed with rf cavities

Lead shielding

Magnetically shielded from outside world

Have done:

3D Gun simulations of a 130 A, 40:1 aspect ratio elliptical beam traversing 30 period structures.

3D PIC Code simulations of rf interaction with the beam.

SBK Simulations

Magnetic Cells

Sheet Beam Program

- Build beam tester and klystron in FY08.
- The beam tester will validate 3-D beam transport simulations and allow a more rapid turnaround for electron gun changes.
- The klystron will be developed in parallel with little feedback from the beam tester. A rebuild of the klystron can incorporate design changes motivated by the beam tester.

Gun and Beam Profile Monitor

Carbon beam probe assembly

Baseline RF Distribution System

Fixed Tap-offs

Circulators

Alternative RF Distribution System

Variable Tap-offs (VTOs)

3 dB Hybrids

At SLAC, Developing Variable Tap-Offs Using Mode Rotation

RF Distribution System without Circulators but with Variable Tap-offs (VTOs)

SLAC is building VTOs and hybrids and acquiring parts to assemble rf distribution systems for FNAL CMs

A VTO and hybrid have operated stably at 3 MW, 1.2 ms, 5 Hz at atmospheric pressure

Variable Tap-Off (VTO) Low Power Test

Gradient Optimization with VTOs and Circulators

Consider uniform distribution of gradient limits $(G_{lim})_i$ from 22 to 34 MV/m in a 26 cavity rf unit - adjust cavity Q's and/not cavity power (P) to maximize overall gradient while keeping gradient uniform (< 1e-3 rms) during bunch train

Case	Not Sorted [%]	Sorted [%]	
Individual P's and Q's (VTO and Circ)	0.0	0.0	
1 <i>P</i> , individual Q's (Circ but no VTO)	2.7 ± 0.4	2.7 ± 0.4	
<i>P</i> 's in pairs, Q's in pairs (VTO but no Circ)	$\textbf{7.2} \pm \textbf{1.4}$	$\left(\begin{array}{c} 0.8\pm0.2 \end{array}\right)$	
1 P, Q's in pairs (no VTO, no Circ)	8.8 ± 1.3	3.3 ± 0.5	
G _i set to lowest G _{lim} (no VTO, no Circ)	19.8 ± 2.0	19.8 ± 2.0	

Optimized $1 - \langle G \rangle / \langle G_{lim} \rangle$; results for 100 seeds

Baseline TTF-3 Coupler Design

Design complicated by need for tunablity (Qext), HV hold-off, dual vacuum windows and bellows for thermal expansion.

Baseline and Alternative Designs

		Cold Window	Bias-able	Variable Qext	Cold Coax Dia.	# Fabricated
	TTF-3	Cylindrical	yes	yes	40 mm	62
	— KEK2	Capacitive Disk	no	no	40 mm	3
	KEK1	Tristan Disk	no	no	60 mm	4
	LAL TW60	Disk	possible	possible	62 mm	2
	LAL TTF5	Cylindrical	possible	possible	62 mm	2

Coupler Assembly and Processing

- Orsay Facilities (shown below) can process about 30 couplers / yr. Down to ~ 20 hours of rf processing time.
- SLAC building similar assembly facilities to provide FNAL with conditioned TTF-3 couplers.

SLAC Clean Room Layout

SLAC Coupler Connection Cavity

Opens fully for cleaning compared to enclosed Orsay design, and does not use indium seals as in KEK split-WG design

Coupler Component Test Stand (SLAC / LLNL)

Facility assembled and operating – initially testing 600 mm long, 40 mm diameter stainless-steel and Cu-coated coaxial sections

A Reliable Center Conductor Mating Scheme was Developed

Slip-fit side to accommodate expansion

Threaded anchor side

Multipacting Data

MAGIC Multipacting Simulation and 'Resonant Finder' Results

Faya Wang

Electron Probe Signal

- Signal has delayed turn-on wrt to rf pulse that varies over time (delay time shortens in presence of magnetic field or high power spike).
- Shape changes with power, amplitude correlated with pressure level.
- After processing, signal becomes small and unstable, sometimes disappearing for long periods.

Current SLAC L-Band Test Stand

Produces 5 MW, 1.4 msec pulses at 5 Hz with a TH2104C klystron and a SNS-type modulator

Source powers a coupler test stand and a normal-conducting ILC e+ capture cavity

ILC Positron Capture Cavity Prototype

Brazed Coupler and Body Subassemblies Before Final Brazing

Two New L-Band Test Stands

- Each new test stand will have
- Modulator with Charging Power Supply
- Oil Tank with
 - HV Water Load
 - Filament PS Transformer
 - Klystron Socket
- Instrumentation and Controls
- Will run independently, 24/7, with summary data archived for trends, detailed data for faults.

RF System Summary

- SLAC pursuing alternate designs while XFEL concentrating more on baseline approaches.
- Marx Modulator approach looks promising.
- First Toshiba 10 MW MBK successful, Thales tubes have run tens of khour, design evolved to correct problems.
 Horizontal versions being developed.
- A sheet beam klystron is being built that is more compact, lighter and likely less expensive than the MBK.
- Evaluating various rf distribution approaches to lower system cost and maximize useable gradient.
- US program ramping up, includes coupler development.