Alternative Source Design

A.Variola on behalf of M.Kuriki EDR KOM Meeting Daresbury 8-10 October 2007

- Basic Idea : Have a Compton effect based polarized positron source
- Advantages :

-Independent system

-Easy polarization flip @ 5Hz + non polarized (linear laser polarization).

-Higher polarization possible (>70%)

-Not disturbing the main beam

-Operability of the positron arm (especially low energy operation)

-Not considerable target heat problem (slow e⁺ production even Linac scheme)

-Wide Applications in many fields

-If ring/ERL can be shared with gamma factory

-depending on the schemes and on choices, part of the Compton driver can be integrated in the e⁻ Linac

-Cost: to be assessed

- Compton for the polarised source
- Conventional or keep alive => some new ideas

Compton scheme

 At present we are working in three different directions : black box for the drive beam for the Compton production

1)Linac => Advantages : gamma produced in one shot. No stacking
2)Ring => Advantages: Required AMD section in respect to ERL
3)ERL => High possible gamma flux. If multiple stacking possible extremely high polarization.

- 10 interaction point ERL Ring
- 5 interactions point Linac
- AMD + 5GeV Linac injector

(easy Linac, performant Ring, Difficult ERL)

Global Characteristics

- 1-2 GeV driver, Linac 4-5 GeV
- Stacking Linac=No, Ring~100, ERL~200-1000
- Linac 10 nC, Ring 10-15 nC, ERL 0,15-1,5 nC
- Polarisation varying from 30% to more than 70%
- Capture from 0.6 to 4 % (captured positrons/gammas)
- In ERL it is possible to diaphragm and reduce the injection phase space for stacking

Linac Scheme

- Polarized γ-ray beam is generated in the Compton back scattering inside optical cavity of CO₂ laser beam and 4 GeV e-beam produced by linac.
 - 4GeV 15nC e- beam with 12 ns spacing.
 - 10 CPs, which stores 10 J CO₂ laser pulse repeated by 83 Mhz cycle.
- 5E+11 γ-ray -> 2E+10 e+ (2% conversion)
- 1.2µs pulse, which contains 100 bunches, are repeated by 150 Hz to generated 3000 bunches within 200ms.
- No stacking in DR

LINAC SCHEME (from Posipol 2007)

- The conversion efficiency of the polarized γ -photons into polarized positrons is expected to be about 2%, optimized for the 60% level of the beam's polarization.
- Therefore, every positron requires, as precursors, 50 γ -photons.
- We propose to accumulate this γ -flux via Compton scattering at 5 consecutive IPs. In each one, a 4-GeV *e*-beam, which fits the collider beam's format but carries a tenfold higher charge per a bunch (10 nC), undergoes a head-on collision with a CO₂-laser pulse that produces one γ -photon per electron.
- The normalized emittance is expected to be 5÷10 μ m.
- The focusing system for the e-beam would need to generate one with a beta-function of 1 m in the waist that would entail beam sizes of σ =25÷35 μ m in the middle, and 35÷50 μ m at the ends of the ~2-meter-long total interaction region that extends over five IPs.
- A 4-GeV *e*-beam divergence will be five times smaller than $1/\gamma$ and, therefore, will not lower the achievable polarization level.
- Simultaneously, a CO₂ laser spot size with $\sigma \equiv 0.5 w_{O} = 35 \mu m$ can be realized as was demonstrated experimentally.

BROOKHAVEN

CO2 Laser system for ILC

Kerr generator 20005 CO_2 oscillator 150ns CS_2 Gel 1μJ 5ps 10mJ 5ps PC. PC TFP from YAG laser 10mJ 300mJ 5 ps 5ps intra-cavity pulse circulation : - pulse length 5 ps 1J energy per pulse 1 J
period inside pulse train12 ns - total train duration 1.2 µs - pulses/train 100 - train repetition rate 150 Hz Cumulative rep. rate15 kHz - Cumulative average power 15 kW IP# IP#

Compton Ring (parameters example)

	E = 1.070 GeV		E = 1.300 GeV	
Parameter	With chic.	Without chic.	With chic.	Without chic.
Gamma's energy, MeV	10 - 20	10-20	15 - 30	15 - 30
Circumference, m	800	1280	1200	1920
Energy acceptance, %	7	5.5	7	5.5
Laser flash energy, J	2	2	2	2
Laser waist (RMS), µ	15	15	15	15
Laser pulse length (RMS), mm	0.5	0.5	0.5	0.5
RF voltage, MV	2×40	20	2×50	30
Bunch length, mm	4 – 6	4-6	4 – 6	4-6
Bunch charge, nC	2	2	2	2
Bunch spacing, cm	48	48	48	48
Stored current, A	1.25	1.25	1.25	1.25
Energy losses (SR + wigglers), keV	700	700	1000	1000
Particles losses per sec., %	< 20	< 20	< 20	< 20
Positron number per sec.	1.05×10 ¹⁴	1.05×10 ¹⁴	1.05×10 ¹⁴	1.05×10 ¹⁴

ERL example

ERL scheme = Linac scheme + Ring scheme

 Continuous stacking the e+ bunches on a same bucket in DR during 100ms, the final intensity is 2E+10 e+.

ERL

	ERL Parmeters				
Energie (GeV)	1 / 2				
Cadence	40 - 160 MHz				
Charge (nC)	0.2		1		
Durée du paquet (fs rms)	500 - 600				
Courant moyen	10-100 mA				
Courant crête (kA)	Total	Slice	Total	Slice	
	0.2	0.2	1	1	
Emittance (mm mrad)	2	1	6	5	
Dispersion en énergie (rms)	0.1 %	0.04 %	0.2 %	0.08 %	

Cavity @ 0.6 Joule 1.5 nC => 1.2 10exp9 gamma 10 interaction points 10exp10 = 200 stackings

With the ERL we have at least 1 order of magnitude more positrons But how to fit them in the ILC scheme?

Prototype Cavities

4-mirror cavity (LAL)

2-mirror cavity (Hiroshima/KEK)

high enhancement very small spot size complicated control moderate enhancement small spot size simple control

Results already obtained: 20 µm waist in 4 mirror cavity (diag.limited) 1.2 exp 3 gain @ 1 ps in confocal cavity (world record)

- Areas of risk, weakness, inconsistencies
- Lasers : ERL/Ring => Fiber+FP cavity, LINAC=>CO2+regenerating cavity. Proof of principle @ very high power
- ERL capture warm sections (cavity + sources)
- ERL CW stacking (high charge low frep)
- Ring => beam lifetime, Operation with compressed/crabbed beam
- Ring => Phase stability under Compton regime
- Ring => Stacking procedure
- Linac => Electron Source for the Compton Driver
- Linac => Numbers of IP (beam optics when $\gamma/e^{-}=1$)

What we need to do (or demonstrate)

- Ring and ERL: Stacking simulations => captured emittance big. Need solution for stacking.
- Ring & ERL : Proof of Principle experiment. Generation of gammas on ring and ERL.
- Ring & ERL : Laser + FP cavities R&D (at least 200W in 10Exp4 cavity in beam Lock a 4 mirror cavity @ high finesse)
- ERL : semi-CW capture section. Design Cavity CW, prototype and look for power source @ 1.3 Ghz
- ERL radiation loss study (safety)
- Ring : Assess the ring lifetime at the nominal current
- Ring : Experiment on beam stability under Compton regime
- Ring : Simulations and Exp : Short bunch operation / Crabbed bunch operation
- LINAC : Gun @ 10 nC, 5 ps (I. Ben Zvi)
- LINAC : Prototype the CO2 laser with the cavity (parabolic+hole)
- LINAC : Study the CO2 Ampli
- LINAC : Regenerative ring Cavity
- Everybody : simulations (and experiment) of the multiple collision point taking into account the energy spread generated by the Compton collisions
- Everybody : Costing.
- Everybody : Choose a final scheme