EDR Positron Source KoM, CI, Oct 2007

Pair-Production Target

Ian Bailey
University of Liverpool / Cockcroft Institute

RDR Target Design

 Wheel rim speed (100m/s) fixed by thermal load (~8% of photon beam power)

•Rotation reduces pulse energy density (averaged over beam spot) from ~900 J/g to ~24 J/g

Cooled by internal water-cooling channel

•Wheel diameter (~1m) fixed by radiation damage and capture optics

•Materials fixed by thermal and mechanical properties and pair-production crosssection (Ti6%AI4%V)

•Wheel geometry (~30mm radial width) constrained by eddy currents.

•20cm between target and rf cavity.

•Axial thickness ~0.4 radiation lengths.

T. Piggott, LLNL

Drive motor and water union are mounted on opposite ends of through-shaft.

Current Baseline Target Activities

- Prototyping
- Simulation
 - Eddy currents
 - Rotordynamics
 - Fatigue modelling (microstructure)
 - Thermal modelling
 - Thermal stress simulations (shock waves)
 - Radiation damage modelling
 - Activation modelling (see target hall)

Target Prototype Design Prototype I - eddy current evaluation

Target Prototyping Status

- Experimental area at DL allocated
 - Area caged. Services (water cooling, etc) available.
- Magnet has been sourced
 - Model 3474-140 GMW water-cooled electromagnet
 - Variable pole gap (0mm to 160mm)
- Drive motor (15kW) purchased
 - Interlock circuit designed and under construction
- Ti alloy wheel is being manufactured
 - Delivery expected in next couple of weeks
 - Also possible Al wheel (grade 5083).
- Assembly to begin Oct '07
- Most instrumentation ordered
 - DAQ design still being finalised
- Cooling system not yet designed
 - Rim temperature estimated to reach 200°C for convective cooling in air.
- Guarding being designed

Experiment Programme

- Balancing and initial commissioning ~Nov 07
- Operation of wheel without magnet ~Dec 07 Calibrating transducers and DAQ

Cooling needed

- Operation of wheel in magnetic field Jan to Mar 08
 - Systematic scan of field strength (0T to 1T in 0.2T steps)
 - Systematic scan of ang. vel. (0rpm ro 2000rpm in 50rpm steps)
 - Avoiding critical speeds.
 - Torque and temperature readings to be compared with the predictions of computer simulations.
 - Optionally scan immersion depths
- Long-term operation of wheel to monitor stability ~Apr 08
- Additional investigations using aluminium wheel
- Experiment complete by May 08.

Flywheel Critical Speeds (Stainless Steel Drive Shaft)

Thermal Stress / Shock

Undulator photon beam target temperature, C, 100 m/s wheel rim velocity

TOPAZ-3D and **DYNA-3D** simulations

 Rapid energy deposition generates a pressure shock wave

 Maximum stress is experienced at the back surface of the target

 For older beam parameters (small beam spot), peak stress was ~4x10⁸Pa

 This is a factor of two below the yield stress

 Simulation is being reevaluated with updated parameters and target design.

Disagreement between
 Cornell and LLNL results

Outstanding issues that could lead to design change

- Target shock wave studies
 Beam tests (TTF?)
- Eddy currents and target immersion
- Downstream beam window survival – Gas cooling between two windows?
- Vacuum studies
- Rotating coupling performance / radiation hardness
- Water union and cooling channels
- Radiation damage studies
 - Wheel size

Alternative ≻ target materials

Alternative Targets and Materials

- Machiolated Ti alloy rim (eddy current studies)
- W-Re
 - LLNL studies indicate shock wave problems
- Hybrid
 - E.g. W-Re wheel with Ti alloy rim
 - How to cool rim?
- Ceramics (eddy current studies)
 - Initial study carried out at RAL
- Graphite
 - High density graphite wheel exists at BINP
 - Radiative cooling
 - Probably not suitable for ILC
- Liquid metals
 - Cornell Pb-Bi and Hg designs (cavitation and window survival)
 - BINP liquid Pb design (not suitable for ILC)

Continue in EDR phase

Target EDR Phase

Scope of work package

- Everything inside the target vacuum vessel excluding the capture optics
- Drive
- Cooling
- Target wheel
- Vacuum Vessel/ Hall Integration
- Instrumentation/Controls

Drive

- Vibration/Rotordynamics
- Ferrofluidic seals
- Mechanical Simulations
- Drawings

Cooling

- Water union coupling to driveshaft
- Cooling channel techniques
- Drawings
- Simulation
- Alternatives
 - Radiative cooling (of Ti alloy)

Target Wheel

- Physics simulations
- Thermal/Mechanical simulation
- Failure analysis
- Material property changes (thermal/radiation degradation)
- Design & drawings

Instrumentation/Controls

- Accelerometers/vibration sensing
- Torque transducer
- Temperature sensing
- Cooling flow sensors
- Motor diagnostics
- Coupling with fast/safety controls and shutoffs
- Design and specification

Vacuum Vessel/ Hall Integration

- Vacuum seals
- Vessel design
- Achievable vacuum studies
- Coupling with services
- Beam windows

Summary

- Current initatives need to continue into EDR phase
 - Eddy currents
 - Thermal studies (material tests, etc)
- New initiatives required
 - Vacuum studies (seal tests, etc)
 - Instrumentation and controls
- Could organise work by system or by issue