

Positron Source KOM

Opening remarks/comments from EDR Project Management Daresbury Lab. 8.10.2007

Nick Walker

Global Design Effort

Goals of the KOMs

- Review the RDR baseline design
 - Does it meet performance requirements
 - What are the outstanding critical issues which must be addressed
 - R&D priorities

- Engineering priorities
- Beam Dynamics (simulations)
- Make an 'inclusive list' (not everybody has the same opinion)
- Review consistency of RDR baseline cost estimate
- Understand cost drivers and interfaces
 - Focus: CF&S drivers!
- Understand/review the existing Alternative (ACD) designs
 - Criteria for 'upselect'
 - Time-lines
- RDR \rightarrow Baseline Configuration (in EDMS)

Positron Source Specific

- Cost perspective: system ~6.3% RDR TPC (~420 MILCU)
 - Not insignificant!
 - CFS dominant at 45% system cost (186 MILCU)
 - SRF (5GeV linac) and Magnets/Power Supplies come next (both ~85 MILCU)
- Must balance EDR activities/priorities with this in mind.

Positron Source Specifics

- Given potential cost impact, primary focus will be on producing 'conceptually engineered' solution, which minimises CFS costs while maintains required performance:
 - System integration
 - Some suitable level of magnet and vacuum engineering
 - Beam dynamics issues
- Goals:
 - detailed layout of beamline components in housing (3D CAD) \rightarrow particular underground space requirements
 - <u>Improved specification</u> of (warm) components to consolidate/verify value estimate
- Defining exactly what "<u>conceptually engineered</u>" and "<u>Improved</u> <u>specification</u>" mean given the associate cost should be part of the KOM agenda.
- System Integration Critical!
 - E+ source 'interferes' with virtually every other Accelerator System.
 - Layout needs to be carefully reviewed further possible cost-driven integration considered.

Specifics (real goals)

• Step 1: consolidate the RDR

ilr iir

- Bring RDR system design/specification/costs into ILC-EDMS Baseline Document
- (This should be much more detail than the RDR text)
- Step 2: Identify critical engineering path
 - WPs, milestones etc. to achieve level of engineering design we want.
 - (Will include necessary beam dynamics WPs)
 - Identify early the need for prototyping (real money!)
- Step 3: R&D (←<u>not</u> the focus for the KOM)
 - Define WPs, milestones, schedule for critical (highpriority) R&D (if any).
 - Must be realistic given our predicted resources
 - Eg. How critical/urgent is it to prototype the target?
 - Note the RDR says there are no show-stoppers.

Top-Level EDR Project Schedule

Task

• 1) Planning Phase

- 1.1) Release project guidance, tools, organizational info
- 1.2) Release Engineering Project Management Plan
- 1.3) Change Control template released
- 1.4) Release accelerator areas WBS dictionaries
- 1.5) Release preliminary list of accelerator area work packages

• 2) Execution Phase

- 2.1) WBS Level 1–3 Responsibilities & Interfaces reconciled
- 2.2) Key technical issues answered for Engineering Design
- 2.3) Completion of integrated value engineering exercise

• 3) Report Preparation Phase

- 3.1) First draft of EDR content provided by Level-3 managers
- 3.2) Complete internal review of draft EDR
- 3.3) Draft EDR released for external review

• 4) Review & Approval Phase

- 4.1) International Independent EDR Review
- 4.2) Final EDR released

- 2007 2008 2009 2010 2011 Project Managers ۵ **Project Managers** Project Managers Level-3 Managers Level-3 Managers Integration Engineer \diamond Level-3 Managers **Project Managers** Level-3 Managers **Project Managers** EDR Editors ILC Director ILC Director
- Need to understand exactly what <u>Planning Phase</u> and <u>Execution Phase</u> mean for e- system.

- i.e. filling in the details and e- specific milestones

Project Definition / Management

- WP structure
 - Should aim for well-defined 6-10 WPs
 - (WPs have a start, middle, end and deliverable)
 - WP definition template has been distributed
 - Will generate a lot of work (and questions!)
- Schedule
 - Identify relationships and constraints between WPS
 - May cause an iteration in WP definition
- WP allocation
 - Statement of our policy, specifically concerning magnets, vacuum etc.
- Relationship to CFS and ML Tech:
 - How best to manage the cross-connects

WP Allocation Process

- WP Allocation must be a <u>clear and transparent international</u>
 <u>process</u>
 - What does this mean?
- We are very short of resources
 - Institutes with existing resources must be included (credited)
- Existing funding / programmes must be acknowledged
 - This is a constraint, but not necessarily a rigorous one.
- R&D on alternatives as well as baseline must be integrated into the project.
- We must endeavour to maintain a healthy global project/collaboration

EDR Policy on Alternative Designs

- RDR Baseline must take priority
 - We must identify critical path for baseline and find adequate resources
- Alternative (ACD) must also be supported
 - 'most promising' R&D should be priority
 - Again, R&D groups bringing resources to the table should be accommodated
- What consolidates ILC-related R&D
 - EDR policy being developed
 - Will probably demand some level of activity on baseline
 - (details being discussed)

EDR, Beyond EDR

- Begin of construction is currently unknown
 - Technically driven timescale of 2012
- Only know and well-defined deadline (for us) is EDR publication mid 2010
 - We must focus on this date.
- EDR must reflect the state of the technology at time of publication
 - Baseline must be 'engineering ready'
 - Better (more accurate) cost estimation required
- Promising ACDs will go beyond EDR publication
 - We will construct the machine with the most mature costeffective state-of-the-art technology available to us when the time comes