BDS Instrumentation

Philip Burrows

John Adams Institute, Oxford University

Mike Woods

SLAC

Thanks to: Manfred Wendt (FNAL)

Outline

- Reminder of RDR
- EDR instrumentation issues
- Updated instrumentation list
- Expressions of interest
- Development of WBS

Reminder of RDR

- Instrumentation was 'technical system' with pan-machine view
- Purview: meas. of *beam-related* parameters:

eg. beam position, charge, size ...

NOT

RF control, temperature, pressure, flow, currents ...

- Boundary with Controls defined (NB feedbacks)
- Luminosity, energy, polarimetry explicitly excluded
- Did not consider monitors for beam-related backgrounds

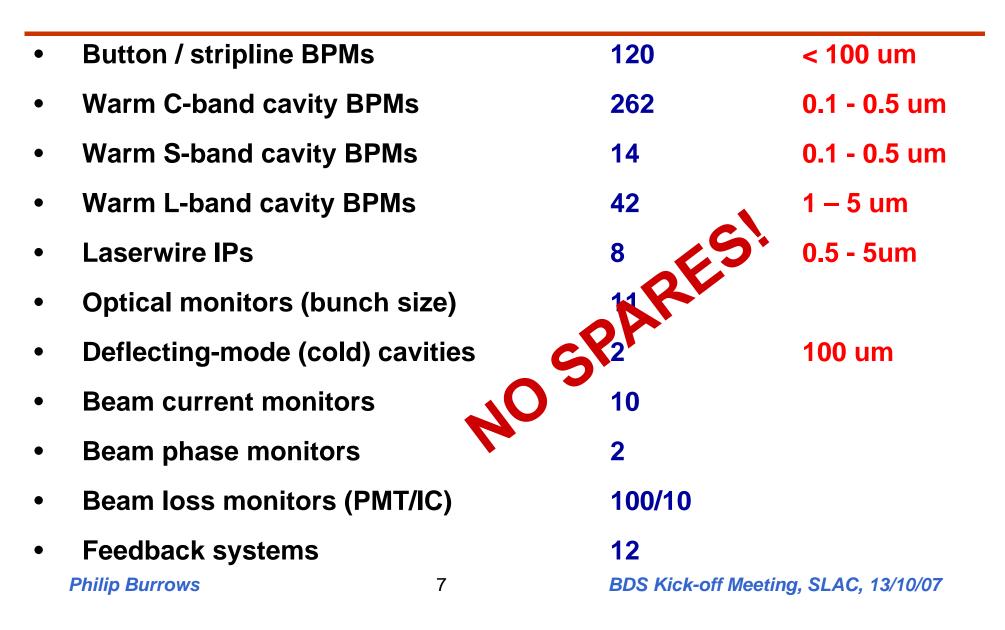
RDR instrumentation master table

INSTRUMENT	AREA					
requirements	e ⁻	e+	DR	RTML	ML	BDS
(e.g. resolution)	source	source				
Button/stripline BPM	69	400	2×747			120
resolution (μm)	10-30	10-30	< 0.5			<100
C-Band Cavity BPM (warm)		109		2×649		262
resolution (µm)		< 0.1-0.5		< 0.1-0.5		< 0.1-0.5
S-Band Cavity BPM (warm)						14
resolution (µm)						< 0.1-0.5
L-Band Cavity BPM (warm)				2 imes 27		42
resolution (µm)				<1-5		<1-5
L-Band Cavity BPM (cold)				2×28	2×280	
resolution (µm)				$\sim 0.5 - 2$	$\sim 0.5 - 2$	
Laser-wire IP	8	20	2×1	2×12	2×3	8
resolution (µm)	< 0.5-5	< 0.5-5	< 0.5-5	<0.5-5	< 0.5 - 5	< 0.5 - 5
Wirescanner	12	8				
Optical Monitors	6	17	2×2	2×8		11
DMC	3	4		2×2		2 (cold)
resolution $\Delta \mathrm{E}$ ${\sim}0.1\%$ / s_z ${\sim}100~\mu\mathrm{m}$						
Beam Current Monitors	7	11	2×1	2×2	2×3	10
Beam Phase Monitor	4	2		2×3		2
BLM (PMT/IC)	60/2	400/20	$2 \times 40/4$	$2 \times 75/2$	$2 \times 325/10$	100/10
Feedback System	5	10	2×2	2×1	2×10	12

Philip Burrows

BDS Kick-off Meeting, SLAC, 13/10/07

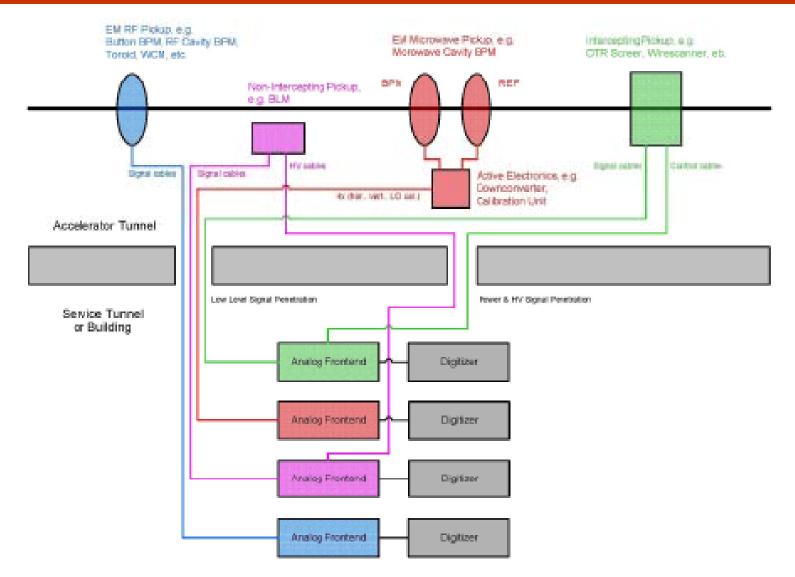
RDR instrumentation master table


INSTRUMENT	AREA					
requirements	e ⁻	e ⁺	DR	RTML	ML	BDS
(e.g. resolution)	source	source				
Button/stripline BPM	69	400	2×747			120
resolution (μm)	10-30	10-30	< 0.5			<100
C-Band Cavity BPM (warm)		109		2×649		262
resolution (μm)		< 0.1 - 0.5		< 0.1-0.5		< 0.1-0.5
S-Band Cavity BPM (warm)						14
resolution (μm)						< 0.1-0.5
L-Band Cavity BPM (warm)				2 imes 27		42
resolution (µm)				<1-5		<1-5
L-Band Cavity BPM (cold)				2×28	2×280	
resolution (µm)				$\sim 0.5 - 2$	$\sim 0.5 - 2$	
Laser-wire IP	8	20	2×1	2×12	2×3	8
resolution (μm)	< 0.5-5	< 0.5-5	< 0.5-5	< 0.5 - 5	< 0.5 - 5	<0.5-5
Wirescanner	12	8				
Optical Monitors	6	17	2×2	2×8		11
DMC	3	4		2×2		2 (cold)
resolution ΔE ~0.1% / s_z ~100 μm						
Beam Current Monitors	7	11	2×1	2×2	2×3	10
Beam Phase Monitor	4	2		2×3		2
BLM (PMT/IC)	60/2	400/20	$2 \times 40/4$	$2 \times 75/2$	$2 \times 325/10$	100/10
Feedback System	5	10	2×2	2×1	2×10	12

Philip Burrows

RDR BDS Instrumentation List

Button / stripline BP	Ms	120	< 100 um
Warm C-band cavity BPMs		262	0.1 - 0.5 um
Warm S-band cavity BPMs		14	0.1 - 0.5 um
Warm L-band cavity BPMs		42	1 – 5 um
Laserwire IPs		8	0.5 - 5um
Optical monitors (bunch size)		11	
Deflecting-mode (co	Deflecting-mode (cold) cavities		100 um
Beam current monitors		10	
Beam phase monitors		2	
Beam loss monitors (PMT/IC)		100/10	
Feedback systems		12	
Philip Burrows	6	BDS Kick-off	Meeting, SLAC, 13/10/07


RDR BDS Instrumentation List

What was costed

- Pickup station (typically part of vacuum system)
- 'Detectors': PMTs, scintillators, lasers, calib. systems
- **RF system + infrastructure for DMCs**
- Mechanical setup, incl. motors, switches ...
- Signal + control cables, connectors, patch panels
- Dedicated readout electronics (analogue + digital)
- Control, timing, calibration electronics
- Local software + firmware
- Intra-train feedbacks: dedicated DAQ

Boundary with Controls

;, 13/10/07

BDS Feedbacks

- Train-to-train trajectory 5 Hz
- IP collision: intra-train (3 MHz) + 5 Hz
- IP luminosity: intra-train
- **NB upstream feedbacks:**
- End-of-linac trajectory: intra-train
- **RTML feed-forward: intra-train**
- Linac cascaded trajectory 5 Hz

RDR costs / cost drivers

Machine-wide:

- Value: c. 93MILCU
- Labour:

Prototyping + testing: 257 person-years NB: installation labour covered elsewhere

• **Biggest + costliest systems:**

4500 BPMs (47%), 68 laserwire IPs (22%)

BDS:

• 12 MILCU (3.4% BDS cost – Andrei), 40 person-years

Philip Burrows

EDR Instrumentation: issues

Instrumentation divided among areas; need to:

- Ensure coordinate design of common devices (BPMs, toroids, bunch length, laserwire ...)
- Avoid duplication of effort
- Keep track of interfaces w. Controls
- Work closely w. Accelerator Physics group
- Define interface with detectors:

'MDI' instrumentation: L, E, P, backgrounds?

Comments

Some devices are high-volume, with 'low' unit cost:

toroids, BPMs ...

Some devices are (unique) complex systems:

laserwires, energy spectrometers, polarimeters,

LOLA bunch-length monitor, feedback systems ...

Vast majority of effort will go into complex systems!

EDR BDS Instrumentation: plan

• Reviewing instruments list:

Is it consistent / correct?

Missing items?

- Collecting Eols
- Need to review/define:

Scope of work for EDR

Priorities for effort: design + R&D

• Develop WBS in more detail

For each device

Review required performance specifications

iteration with Accelerator Physics

• Review RDR technologies:

'state of the art' devices: good enough, or R&D needed?

simpler/cheaper technologies?

baselines/alternatives?

fewer (or more!) devices?

• Refine EDR work plan + deliverables:

Specification of 'off-shelf' devices?

Engineering design of (pre-industrial) prototype?

Significant R&D for complex devices/systems?

PRELIMINARY guess of status

- Button / stripline BPMs
- Warm C-band cavity BPMs
- Warm S-band cavity BPMs
- Warm L-band cavity BPMs
- Laserwire IPs
- Optical monitors (bunch size)
- Deflecting-mode (cold) cavities
- Beam current monitors
- Beam phase monitors
- Beam loss monitors (PMT/IC)
- Feedback systems

Philip Burrows

off-shelf / engineering engineering / R&D engineering / R&D engineering / R&D **R&D / engineering R&D / engineering** engineering off-shelf **R&D / engineering** engineering **R&D / engineering**

BDS Kick-off Meeting, SLAC, 13/10/07

Comment

- In some cases (cavity BPMs, toroids ...) required performance may have been achieved for SINGLE-bunch mode
- Further R&D may be required to demonstrate TIME-RESOLVED performance bunch-by-bunch

'Physics' instrumentation

• Upstream + downstream

energy + energy spread measurement

polarimeters

• Luminosity monitoring:

Beamcal, Gamcal, rad. Bhabhas ...

- Beam correlations: y-z, x-z, E-z?
- IP collision parameters: x, x', y, y', offsets, spot sizes, coupling ...
- Disrupted beam parameters
- Beam halo, beam loss monitoring
- Background monitoring:

muons, neutrons, photons, e+e-

Commissioning strategy

• If commissioning of BDS and/or IR is anticipated BEFORE the detector(s) are rolled on beamline

it may be prudent to plan for appropriate instrumentation at the Machine Detector Interface

• NOT included so far

Expressions of interest

Button, stripline, cavity BPMs	FNAL
Laserwire	UK
Bunch length (also beam phase)	UK, FNAL
OTR/ODR monitors	UK, FNAL
Toroids	FNAL
Feedback systems	UK, FNAL
E-spectrometer UK, UCB, JIN	R, DESY, SLAC, Notre Dame, Oregon
Polarimeter	Iowa, INFN, SLAC, Tufts
Gamcal	BNL, Yale, DESY
BDS/IR alignment	UK
Shintake Monitor (ATF2)	Tokyo

Comments on Eols

- Not all bases covered by Eols
- Scope of Eols varies considerably
- Levels of resources vary greatly
- Not yet 'unpacked' Eols
- Vastly more worldwide expertise than in submitted Eols

Towards a WBS

- Draft WBS for WP9 ...
- Laundry-list of instrumentation!
- **NB:** Overlap with WP2: ATF2

Coupling with WP3: accelerator physics design Coupling with WP4: IR + IR integration Interface with WP10: vacuum system Interface with Controls

- **Global approach needed for feedback**
- \rightarrow is a 'systems' approach more desirable?

Philip Burrows

MDI 'Diagnostics'

- Electromagnetic interference antennae?
- Radiation damage monitors?
- Crab cavity phase
- Magnet vibrations
- Alignment
- Vacuum
- Temperatures
- Magnetic fields
- Power supply currents