Accelerator Science and Technology Centre

BDS Vacuum System

Dr. Oleg B. Malyshev ASTeC Daresbury Laboratory

BDS Vacuum system work package

- Physics
 - Material science (ougasing, coatings) laboratory studies
 - E-cloud
 - Gas dynamics modelling gas density profiles and pumping optimisation
 - Impedance of vacuum chamber, BPM, pumping and gauge ports
- Practical vacuum science
 - Choice of valves, pumps, gauges, controllers, racks, leak detectors
 - Power consumption for bakeout and operation
 - Services: electricity, water cooling, gases, remote control, cables
 - Cost estimations
- Engineering
 - Integrated design
 - 2D layout: all elements a part of a beam chamber, connected to or near the vacuum chamber fist check that there are no overlaps for different components
 - 3D design of vacuum chamber with a simplified view of other components (vacuum chamber inside magnets)
 - Detailed design of IR vacuum chamber
 - Conceptual design of BPM, RF shielded bellows, optic insert.
 - SR power deposition SR power absorbers of needed
 - Pumping ports, valves, bellows, tapers position
 - Vacuum elements mechanical support

Physics

- Material science (outgassing, coatings) laboratory studies
 - Choice of material for vacuum chamber (SS, AI, Cu, ...)
 - Inner coatings: Cu, Au, TiZrV?
 - New data for photon stimulated desorption at the critical energy as high as possible (20-100 keV), the BDS there will be $\varepsilon_c > 1$ MeV
 - Compatibility to bakeout (180°-250°C)
- Provide the necessary input for the gas dynamic model

Physics

- E-cloud
 - If there is any e0cloud related problems
 - E-cloud power in cryogenic elements
 - Electron multipacting intensity (rate and electron energies) onto vacuum chamber
- Outcome:
 - If e-cloud should be considered in vacuum design to suppres it
 - Provide the necessary input for the gas dynamic model

Physics

ASTeC

- Gas density profiles and pumping optimisation:
 - gas dynamics modelling is based on experimental input for known materials
 - Needs apertures and lengths of all elements
 - Needs SR photon fluxes and energy along the BDS
 - Need to know required pressure (gas density) after given time/dose for pumping and conditionning (ex.: 100 Ah or 1 year at I=?? mA)

• Outcome:

- recommended pumping scheme:
 - positions of pumps,
 - distributed or/and lumped
 - Options
 - How it may change with time

Physics

- Impedance of
 - Vacuum chamber,
 - BPM,
 - Pumping and gauge ports
 - Valves, Flanges, Bellows
 - TiZrV coating
 - Absorbers and spoilers
 - Tapers
- Outcome:
 - Provide recommendation to the mechanical design of these elements

Practical vacuum science:

- Choice of valves, pumps, gauges, controllers, racks, leak detectors
- Power consumption for bakeout and operation
- Services: electricity, water cooling, gases, remote control, cables
- Practical experience vs. vacuum modelling
- Outcome:
 - Practical recommendation for vacuum design
 - Cost estimations

ASTeC

BDS Vacuum system work package

- Engineering
 - Integrated design
 - 2D layout: all elements a part of a beam chamber, connected to or near the vacuum chamber – fist check that there are no overlaps for different components
 - 3D design of vacuum chamber with a simplified view of other components (vacuum chamber inside magnets)
 - Detailed design of IR vacuum chamber
 - Conceptual design of BPM, RF shielded bellows, optic insert.
 - Pumping ports, valves, bellows, tapers position
 - Vacuum elements mechanical support

What is needed as an input for mechanical design of BDS vacuum chamber:

- Apertures, collimators, spoilers along the BDS
 - Aperture meanings:
 - free space for a beam or mechanical size of the vacuum chamber
 - Tolerances for apperture, straightness, mechanical position
- Gaps between vacuum chamber and outer devices (ex.: dipole, quadrupole)
- Vacuum chamber support
- Acceptable angle for tapers
- Special vacuum chambers
 - BPMs (design and locations, fixed to quadrupoles or standing alone)
 - ...
- Material for vacuum chamber (SS, AI, Cu):
 - Wall thickness mechanical stability
- Coatings and thickness (Cu, Au, TiZrV)?
- Compatibility to bakeout (180°-250°C)
- Bellows (type, travel, RF fingers, possible locations)
- SR power
 - distributed along vacuum chamber and on
 - SR absorbers and spoilers
- Lost particles power, if large power deposited
- Flanges (gaps, special gaskets)
- Sectorisation and sector valves (location, SR shield and RF smoothness)
- Everything that can affect vacuum chamber and not mentioned above.

Work fields for Daresbury Laboratory, ASTeC and CI

- Theoretical calculation for variety of pumping layout and vacuum chamber proceedings
 - Calculate the average pressure and pressure profiles in the BDS and the extraction lines
 - Decide on the choice of material for the BDS vacuum systems
 - Recommend the BDS pumping philosophy (coatings, pumping, sectorisation, gauges, etc.)
- Reference mechanical design of BSD vacuum chamber
 - Collecting the necessary information and production of technical designs for first vacuum chamber components, based on preliminary specifications
 - Key components design
 - Reference mechanical design
 - Iterations and revisions as necessary

Relation between Vacuum system design and other task

- Optics
 - position of optic components vs. position of vacuum components
 - Beam chamber alignment
- BPM position, fixing to magnets or flow, connecting to vacuum chambers
- IR optimisation
 - Integrated vacuum system to meet specifications
- Crab cavity position, valves, vacuum requirements.
- Collimators
 - position and apperture
 - Needs in TiZrV coating
- Magnets:
 - Available space between poles
 - common girder?

What resources are needed

- Physics
 - Material science (ougasing, coatings) laboratory studies: SR beamline and volunteers to perform the experiments
 - E-cloud modelling expert
 - Gas dynamics modelling gas density profiles and pumping optimisation (1 vacuum scientist)
 - Impedance of vacuum chamber, BPM, pumping and gauge ports (1 expert in impedance study)
- Practical vacuum science
 - At least one practical vacuum scientist is essential (Dr. Suetsugu?) preferably 2 or 3 to present wider experience
- Engineering
 - At least 3 mechanical designer (BDS beamline, IR, dumps), the less people the less could be done