

Physics of Options

Hitoshi Yamamoto BDS Kickoff meeting Oct 12, 2007

1

Gamma-Gamma Collider

Luminosity spectrum

Use e⁻e⁻ for smaller bkg and e- beam polarization (e⁻e⁻, e⁻γ comes with it)

Crossing angle > 25 mrad for safe extraction of disrupted beams.

Lumiosity_{$\gamma\gamma$} peaks at ~ z=0.7. Close to the ee CM energy.

Luminosity usually quoted is for z>0.8z_{max}

- Produced by $\gamma \gamma$ fusion.
 - S-channel production
 - Polarization can reduce backgrounds
- Precise determination of $\Gamma(\text{Higgs} \rightarrow \gamma \gamma)$
 - ${\sim}2\%$ precision
 - Ecm = 210 GeV
 - MH = 120 GeV
 - 410 fb⁻¹

Higgs Total Width

- Combine $\Gamma(H \rightarrow \gamma \gamma)$ measured at $\gamma \gamma$ collider with Br($H \rightarrow \gamma \gamma$) to obtain Higgs total width
 - ~ "error on $\Gamma_{\rm H}$
 - Complimentary to the method on e+e-
- Similar to the error obtained by e+e-
 - **Br(H** \rightarrow **WW***) & Γ (**H** \rightarrow **WW***) calculated by HWW coupling in the WW fusion production of Higgs.

SM Higgs: $\gamma \gamma$

H→bb

MSSM Higgs: $\gamma \gamma$

- In SUSY in general, there are 5 Higgs:
 - Neutral: h, H, A
 - Charged: H+-
- h is like the SM Higgs
- H, A are pair produced in e+e-
 - For Ecm=500 GeV,
 - M_{Amax} ~ 250 GeV for e+e-
 - M_{Amax} ~ 400 GeV for $\gamma\gamma$
- H(CP+), A(CP-) :
 - Can be distinguished by linear polarization

Linear polarization

4 sigma separation of H and A

Circular Polarization

One may first find signal this way.

 $\gamma\gamma$ and e γ colliders can add to e+e-

- $\gamma \gamma$ WW (W exchange)
- $e \gamma vW$ (W exchange)
- Both measure WW γ coupling.
- No ambiguity from WWZ coupling.
 e+e- case: interference of WWZ and WWγ.
- Large cross sections.
 - Coupling sensitivities are similar to e+e-

e-e- collider

- Doubly charged particles in s-channel
 - Appears in some GUT theories
- Sensitive to majorana neutrino
 - $e^-e^- \rightarrow W^-W^-$
 - t-channel exchange of a majorana neutrino
- Selectron quantum numbers
 - $e^-e^- \rightarrow e_{L,R}e_{L,R}$
 - t- channel neutralino only (unlike e⁺e⁻)
 - Use beam polarizations to specify e_R and e_L
 - Change E_{CM} .
 - Excitation curve gives spin.

Giga-Z option

- Run ILC on Z⁰. Collect ~ 1 Giga Z⁰ in a few months.
- Advantage : beam polarization + b tagging
 - Require very high accuracy of beam polarization and energy measurements.
 - E_{cm} to 1 MeV required (relative to Z peak)
- Particularly important if no Higgs (or anything new) is observed at LHC and first running of ILC.

Giga-Z option

	LEP/SLC/Tevatron	Giga-Z
sin²θ(A _{LR})	0.23146±0.00017	±0.000013
M _Z	91.875±0.0021 GeV	±0.0021 GeV
$\alpha_{s}(M_{Z})$	0.1183±0.0027	±0.0009
Δρ	0.0055±0.0010	±0.0005
N _v	2.984±0.008	±0.0004
A _b	0.898 ±0.015	±0.001
R _b	0.21653±0.00069	±0.00014

WW Threshold Run

- W mass measurement
 - Run at Ecm ~ 160 GeV
 - M_w: 6 MeV error in 1 year

(Not many other physics, though)

WW resonances?

If no Higgs found at LHC or 1st ILC,

- Higgs may be very heavy
- Strong W-H coupling
- WW bound state
- May show effects at WW threshold

- Needs to be consistent with the DM relic density:
 Ω_{DM} h² = 0.111+- 0.006 (h: Hubble constant in 100km/s/Mpc ~ 0.7, h²~ 1/2)
- DM has to be stable (cosmic timescale)
- DM has to be massive
- Right annihilation rate: Relic density ~ $1/\sigma_{annihilation}$
- SUSY LSP (lightest super particle): most likely?
- KK (Kaluza-Klein) excitations in large extra dimension models, Little Higgs models, ...
- Axinos ...

4 regions of mSUGRA for DM

Need mechanism to enhance LSP annihilation (too much DM relic density otherwise)

- Bulk region: mostly excluded
 - Small m₀, m_{1/2} (LCC1)
- Focus point region
 - m₀ >> m_{1/2}: LSP~Higgsino (LCC2)
- Co-annihilation region
 - m(NLSP) ~ m(LSP)
 - NLSP annihilation also (LCC3)
- Funnel region
 - m(A) ~ 2 m(LSP) : pole enhancement (LCC4)

e+e- → stau stau stau → tau + neutralino Stau and neutralino nearly degenerate Tau pairs are very soft ~ a few GeV Large two photon background e+e- → e+e- tau+ tau-Need to find the high energy e+e- near beam direction Use Beamcal.

Two-photon Background

U. Nauenberg

- 14 mrad crossing requires two holes in Beamcal.
- Head-on or 2mrad crossing require only one hole.
- Loss of two-photon tagging efficiency result in effective luminosity loss of ~40% for two holes.
- Applies to other potentially important modes with a few soft charged tracks with nothing else.

- Very naively,
 - Background on a given event (assuming bunch id)
 - determined by hits per bunch crossing
 - So, if pairs \propto luminosity,
 - Background hits \propto bunch luminosity
 - E.g. Low-P background ≈ 2× nominal background
 - '2×' applies to all backgrounds proportional to luminosity
 - Two-photon, radiative Bhabha, debris ...
- For pairs, effects can be more than ×2
 - Pt of the pairs \propto E field on the surface of bunch
 - Pt is ~1.5 times larger for Low-P than nominal
 - More pairs hits the detector

Summary

- Options can add substantial physics outputs with modest investments.
- Some of the options come together.
 γ.γe-..e-e-
- The values of given option depends on what is found at LHC and 1st ILC
- We should keep the options open, and do minimal preparations.

(Sorry not to cover fixed target option - due only to my ignorance)