

ILC Head-On Interaction Region: Status Report

Olivier NAPOLY For the Head-on Task Group

> ILC BDS KOM 12 October 2007

Head-on Task Group

TECHNICAL CHALLENGES FOR HEAD-ON COLLISIONS AND EXTRACTION AT THE ILC (PAC'07, Albuquerque)

B. Balhan, J. Borburgh, B. Goddard (CERN, Geneva),

- S. Kuroda (KEK, Ibaraki), Y. Iwashita (Kyoto ICR, Kyoto),
- M. del Carmen Alabau, P. Bambade, J. Brossard, O. Dadoun, C. Rimbault

(LAL, Orsay),

- G. Sabbi (LBNL, Berkeley, CA),
- L. Keller (SLAC, Menlo Park, CA),
- D. Angal-Kalinin, F. Jackson, S. Tzenov (STFC/DL/ASTeC, Daresbury),
- R. Appleby (UMAN, Manchester),
- O. Napoly, O. Delferrière, M. Durante, J. Payet, C. Rippon, D. Uriot (CEA)

Outline

- General Layout for Head-on Collision BDS
- General questions :
 - 1. Are the beam line elements feasible ?
 - 2. Is the beam line cost effective ?
 - 3. Is the beam line easily tunable w.r.t. Luminosity and Extraction ?
 - 4. Does it supply a Post IP beam diagnostics?
- Conclusions

Motivation for Head-on Collisions

For the collider operation, w.r.t. 14 mrad crossing angle,

Head-on makes focusing and colliding easier:

three machine devices are not needed upstream of the IP

- 1. Crab RF-cavities
- 2. Anti-DID (Detector Integrated Dipole)
- 3. Orbit correctors on top of each QD0

Head-on makes extraction more difficult:

beam extraction requires **overfocusing** in the outgoing doublet and **Electrostatic Separators to bend** the spent beams after the IP and before the first parasitic crossing ~ $(c\tau_b/2)$

- 1. dispersion of the low energy tails
- 2. challenging beam usage and transport to the dump.

Final Focus System

Beam Extraction Scheme

Beam Extraction Scheme

Q1 : Are the beam line elements feasible ?

- Essential beam line elements:
 - Large aperture superconducting quadrupole and sextupole doublets
 - Electrostatic separators
 - High power collimators
 - Extraction quadrupoles

Final Doublet for 500 GeV cm Energy

Final Doublet for 500 GeV cm Energy

	QD0	QF1	SD0	SF1
Length [m]	1.008	0.644	0.366	0.212
Gradient	225 T/m	225 T/m	3880 T/m2	3662 T/m2
Field @ bore	10.1 T	10.1 T	8.8 T	8.8 T

Final Doublet : (Solenoid + Quad) 3D Map

Preliminary analysis:

- Solenoid Br component is negligible
- Solenoid Bz < 2 T @ QD0 \Rightarrow Bmax = 7.65 T \oplus 2 T in quadrature \Rightarrow Bmax \approx 8 T on QD0

 \Rightarrow Standard NbTi doublet is feasible for 500 GeV cm energy

ILC BDS KOM, SLAC

Final Doublet : 1 TeV upgrade

MQXB cross section quadrupole

Coil radius	35 mm				
Gradient	210 Tm ⁻¹ (adapt. to 250 Tm ⁻¹)				
Nominal current	12800 A (adapt. to 15 000 A)				
Conductor characteristics (adapt. to Nb ₃ Sn)					
Conductor	internal	external			
Radial length	15.4 mm	15.4 mm			
Little side	1.326 mm	1.054 mm			
Big side	1.587 mm	1.238 mm			
Turns/pole	14	16			

7.49338E-06

0.0

10.0

Component: BMOD/SQRT(X*X+Y*Y)*1000

20.0 30.0

110.3921

40.0

50.0

60.0

220.7842

70.0 80.0 X [mm]

mm

A m⁴ Wb m

W

N J kg

VFOPERA-2d

Final Doublet : 1 TeV upgrade

	QD0	QF1	SD0	SF1
Length [m]	1.374	0.746	0.7	0.4
Gradient	373 T/m	370 T/m	5243 T/m2	4873 T/m2
Field @ bore	10.5 T	10.5 T	4.11 T	3.82 T

Extraction Scheme : Parasitic Crossing

First stage separation is provided by seven 4 m long Electrostatic Separator modules with Es = 26 kV/cm

+ 8 mT compensating dipoles

Beam-beam instability from parasitic crossings is under control when :

- Horizontal transverse separation is larger than 11 mm, and
- R₃₄(IP \rightarrow 1st PIP) < $\beta^{*1/2}$ x 100 m^{1/2}

Updated ILC separator specifications

The total deflection provided by separator of 252 µrad is :

- -12mm separation at 55 m from IP
- 70 mm at QD2A
- (1st separator electrode starts at 11.314 m from IP)

Separator parameters for	250 GeV	500 GeV	
Active length	28		m
Number of tanks	7		
Electrode length per tank		4	m
Electrode spacing	0.65		m
total installation length	32.55		m
Electrode material	tita	nium	
Total deflection required	2	252	µrad
E ₀ (at separator center)	2.25	4.50	MV/m
Split size in electrodes	50	50	mm
Gap width	100 (70-140)		mm
Max. field between electrodes	2.62	5.23	MV/m
Applied Voltage	131	262	kV
Spark rate / tank	< 0.04		#/hr
Field homogeneity	1.0E-02		
in area	22 x 12		mm
Quadrupole component	0.E+00		
Sextupole component	1.60E-03		
Octupole component	0.E+00		
Decapole component	1.14E-04		
Required HV generator	300		kV
# of tanks per HV generator	2/2/2/1		

Electrostatic Separators in Enlarged Tunnel

Electrostatic Separators: HV Circuit

4 generators per polarity for the seven tanks

The corresponding dipoles should allow for the same degree of freedom (number of power supplies

If needed to avoid particle showers on the last separator (in particular in the low energy parameter set of the ILC) it would be possible to increase the field strength seen by the beam by using flat electrodes for the 1st two separators (efficiency 100%, instead of 84%) and opening the gap on the 7th separator. To obtain the same total required deflection, the applied voltages would remain the same.

Electrostatic Separators Experience

Electrostatic Separators Experience

From Jan Borburgh	LESB II (1979) [1]	Tristan (1989) [2]	Tevatron (1992) [3]	SPS ZX (1982) [4]	LEP ZL (1996)	CESR (1999) [5]	BEPC II (2001) [6]
Nominal gap (mm)	150	80	50	40 (20 – 160)	100 (60 – 160)	85	100
Operational field strength (MV/m)	< 5.2	3.0	5.0 max.	5.0	2.5 (tested to 5.0)	2.0	2.2
HV supply (kV)	+/-390	+/- 120	+/- 125	0/-200	+/- 150	+/- 85	+/- 110
Electrode dimension (mm x mm)	n.a.	4600 x 150		3000 x 160	4000 x 260	2700	
Electrode material	Glass	Ti		Ti	SS		
Device length (mm)	n.a.	5105	3000	3380	4500		
Working pressure (mbar)	10 ⁻⁶			10 ⁻¹⁰	10 ⁻¹⁰		
Operational spark rate (#/h)	<1	<0.02		< 0.03	0.2	0.04	
Particle beam	р-	e- e+ 9mA 15GeV	рр-	р р- (270 GeV)	e- e+ (100 GeV)	e- e+ 150 mA	е- 576 mA

Electrostatic Separators: Required R&D

Performance under irradiation

- Evaluation of radiation in existing set-ups
- Expected dose rates and profile
- Tests with beam
- Feedthrough & insulator support design to cope with harsh environment
 - (some work by CERN on insulator treatments available)
- System performance at 5.2 MV/m (1 TeV) and beyond

Optimal electrodes

- Cross section profile
- Manufacturing techniques in case of hollow Ti

Coupling in the event of sparking

- Geometry effects (coupling of field, coupling via the beam / photons etc.)
- Circuit effects (partly dealt with by increasing the number of HV generators, partly to be dealt with by a carefull study of the value of the decoupling resistors)
- Recovery

Electrostatic Separators

Remaining Questions :

• Sparking rate vs. Beam loss intensity \rightarrow no record from LEP

 \rightarrow beam test at ESA (or KEK, ...)

• Field quality in case of slit electrodes

1 TeV upgrade requires 50 - 60 kV/cm
 → Titanium electrode

Intermediate Beam Dump

Concept based on SLAC 2 MW Aluminum/Water Collimator and Dump

Assembled 2 MW slits ≈ 5 m long

Beam Holes Through Intermediate Dump

Estimate of Headon Beam Losses (kW), 500 GeV CM

----- charged ----- beamstrahlung

Loss	Nominal Parameters		Low Power Parameters		
Location	Headon	Vertical offset	Headon	Vertical offset	Radiative Bhabha's
QD0/SD0 (1)	0.	0.	0.	0.	1.5E-05
QF1/SF1 (1)	0.	0.	0.0010	2.0E-04	2.5E-05
Synch. Mask (2) (Z = 12 m)	0.	0.	0.0023	0.0011	5.5E-05
Sep. plates (3)	3.6E-04	2.4E-04	1.5	2.0	5.5E-04
Inter. dump (Z = 136 m)	75 140	90 240	415 215	539 416 (4)	-
Main dump	10,160 125	10,030 135	4,500 115	4,200 95	-

Notes:

- (1) 5.6 cm bore
- (2) 2.0 cm full horizontal gap
- (3) 10.0 cm full horizontal gap
- (4) Exceeds the nominal 650 kW small beam limit for Al/water dumps must check if OK for widely dispersed beam

Beam Extraction Scheme

QF3 modeled after PEPII/BaBar IR Septum Quad design

Q2 : Is the beam line cost effective ?

- Cost Drivers
 - Tunnel length and diameter
 - Is Head-on more economical ?
 - Number of beam dumps
 - Can the main dump be used for the LINAC commissioning from the other side (à la TESLA) ?
 - Electrostatic separator
 - total price estimate ~ 6 M\$ for 14 tanks
 - Final quadripole and sextupole doublets
 - total price ???
 - Intermediate collimator
 - total price ???
 - Detector push-pull
 - I* = 6.3 m is feasible : moves the final doublet out of the detector area.

Q3 : Is the beam line tunable w.r.t. Luminosity and Extraction ?

Questions concerning the 14 mrad crossing angle:

• with ±7 mrad angle, the vertical orbit displacement due to Bx along the solenoid at the IP is of the order of 100 µm, depending on the Solenoid fringe pattern, the Anti-DID configuration and the position of QD0: \Rightarrow all magnets creating and correcting this effect must be stable to better that 10⁻⁵

 the scanning of the centre of mass energy can be done by scaling all magnets with energy, except if the main Solenoid field is kept constant:
 ⇒ the orbit correction in the final doublet needs to be re-optimized for every energy step.

• what is the interplay between the $\langle x\delta \rangle$ (local chromaticity), $\langle xz \rangle$ (crab cavity), $\langle y \rangle$ (solenoid compensation) bumps ?

Q3 : Is the beam line tunable w.r.t. Luminosity and Extraction ?

Questions concerning the Head-on scheme :

- Solenoid coupling correction : skew quad or anti-solenoid? \rightarrow Final doublet magnet design
- Electrostatic separator failure handling in the IR ?
- Effect of the extraction collimators background on the detector operation

Tuning of Head-on FFS at 2nd order

Automatic CCS matching based on Luminosity optimisation

Solenoid Coupling Correction

12 October 2007

not fully optimized.

ILC BDS KOM, SLAC

0.005

0.000

100

125

150

Energy (GeV)

200

250

Electrostatic Separator Failures

Q4 : Does the beam line allows for Post IP beam diagnostics ?

Tentative concepts

- **Polarimeter** using Compton collision at the IP \Rightarrow bring a suitable LASER at (or close to) the IP
- Spectrometer using the Extraction Bends and 2 BPMs

Spectrometer with 2 BPMs

- FF optics has about 120 mm dispersion
 ~ 0.01% energy resolution
- Extraction optics has about 8 mm dispersion
 - ~ 0.1% energy resolution

FLASH BPM with 78 mm inner diameter demonstrated 4 µm resolution over 10 mm range, and 40 ns time resolution

Prospects

 Head-on IR has the potential to be a Luminosity and Cost effective option for 500 GeV and 1 TeV ILC

• Head-on IR has the potential to make full profit from the high-field superconducting magnet technological developments driven by SLHC

• Spent beam extraction system has been found with manageable beam and beamstrahlung losses.

- Post-IP instrumentation would require new concepts :
 - Compton polarimetry at the IP with 25-50 GeV electrons
 - Energy measurement via ES-BPM
- Beam test of an existing LEP ZL **separator module** or better, a CESR split separator is necessary.