

BDS Cryogenic System RDR Status and EDR Plans

T. Peterson 11 October 2007

Cryogenic devices in BDS

- Tom, I use this slide for comment.
- As last workshop:

ilr

İİL

- there will be a CMS type Solenoid magnet for each detector, 4.5 K cooling
- There will be two detectors, for operation and at garaged position.
- Cooling must be provide to both detectors for DQ0s and Solenoid at the same time in either positions.
- Among the 15 W 2 K heat load for DQ0, only ~ 1 W is for beam heating.
- We don't know the heat load of crab cavity.
- Independent Warmup/Cooldown on some hardware (for example 2 QD0 or cavity, QF1) maybe needed.
- Other than the refrigerator/liquefier (in experimental hall), Compressor etc. will be installed on ground level similar to CMS? This has an impact on cost etc.

Cryogenic devices in BDS

- Considering just one of the two sides, neglecting detector cryogenics in this summary
- At 1.8 K
 - One cryomodule with two 3.9 GHz cavities
 - 13.4 meters from the IP
- At 2.0 K (for magnet at 2 K, we need 1.8 K cooling)
 - Two final focus cryostats with multiple magnets
 - Within 12 meters of the IP
 - One cryostat travels with the detector, one is fixed
- At 4.5 K
 - Need 4.5 K shield for QD0 and QF1
 - Tail folding octupoles
 - Far from the IP, would require a long cryogenic transfer line
 - May be cooled by means of separate cryocoolers

ic

- The superconducting magnets, especially final focus quads, may absorb some significant beam-induced heating
 - Two cryostats on each side
 - Rather complex cryostats
 - Multiple magnets
 - Warm-cold transitions
 - Many current leads for independently powered magnets
 - Use of HTS leads may minimize cooling required
- Crab cavity cryostats are relatively small
 - Heat loads dominated by RF heating
- No liquid nitrogen in the tunnel
 - 40 K to 80 K helium gas thermal shields and intercepts

RDR BDS cryogenic system heat

- A lump-sum heat load estimate for magnets, crab cavities, and distribution losses, which is for each side
 - 2 grams/sec liquefaction
 - Provides 30 W cooling at 1.8/2.0 K with room-temperature pumps, plus some current lead flow (baseline heat load is 30 W for DQ0 + QF1 alone)
 - 200 W at 4.5 K
 - May be divided as some 2 K and some 4.5 K cooling with each 2 K Watt "costing" as much as 3.5 W at 4.5 K.
 - 1000 W at 40 K to 80 K
 - Helium gas thermal shield cooling
- Doubling (for two sides) and multiplying by a factor 1.5 for uncertainty and control gives the numbers in the following spreadsheet

 This estimate was done nearly a year ago and provided input for the RDR cost estimate for BDS cryogenics 28 Sep 2007 Tom Peterson ML Integration KOM 5

RDR BDS cryogenic capacity May need revise

Cryo plant description	ILC BDS
Plant capacity at each temperature level (after all factors)	(factor 1.5)
40 to 80 K (kW)	3.00
5 to 8 K (4.5 K for DR) (kW)	0.60
2 K (kW)	0.00
liquid production (gr/sec)	6.00
Plant efficiency at each temperature level	
40 to 80 K (W/W)	16.00
5 to 8 K (W/W)	328.00
2 K (W/W)	800.00
liquid production equivalence (4.5 K Watts per gr/sec)	125.00
4.5 K ideal reference power (W/W)	65.66
4.5 K reference efficiency (fraction carnot)	0.30
4.5 K reference efficiency (W/W)	218.87
Equivalent overall 4.5 K capacity (kW)	1.868
Wall plug power (MW)	0.409

 Very approximate but generously (??) large heat load estimates

Followed by additional factor 1.5

- No distribution system details nor cryogenic end box details were developed during RDR
- Overall plant size for just the two sides of BDS (not detector) is equivalent to about 2 kW at 4.5 K, not a very large cryogenic plant
 - For comparison, Fermilab's magnet/SRF test facility cryogenic plant is 1500 W at 4.5 K, about this size

ilr

İİİ.

Conclusions for EDR

- EDR goal -- a full preliminary system design
 - Develop features for push-pull
 - Make bottom-up heat load and flow rate estimate
 - Develop flow schematic with approximate line sizes and instrumentation
 - Determine cryostat locations, transfer line lengths
 - Work out the tail folding octupole cooling scheme
 - Create top level CAD models of cryogenic system components, not detailed drawings
 - Helps to define space occupied and interfaces
 - Define relationship with detector cryogenics
 - Revise cryoplant size and cost estimate
- Estimate 0.2 FTE during EDR for above work

İİL