

BDS KOM Close-Out

Marc Ross / Nick Walker 13.10.2007 SLAC

Global Design Effort

BDS Design Maturity

- Lattice design is probably most mature of any Accelerator System
 - NLC legacy
 - Many iterations
- Now is a good time to consolidate / review
 - Understand 'base design criteria'
 - Cost performance derivatives
 - Cost reduction
- Current RDR status provides an excellent base to start from.

Understanding Cost Drivers

• Critical for EDR planning

ir ii

- "value" engineering and cost-driven design should be reflected in the WBS
- A cost leverage should be assigned to each identified WP.
- Critical (accelerator design) items
 - How much does support of 1TeV cost?
 - HEP diagnostics <u>requirements</u> driving costs
 - General lattice design / requirements / functionality
- Engineering cost drivers
 - Concrete! (Keep It Short and Simple)
 - Water cooling
 - Power

Tightly connected and must be iterated (VALUE engineering)

AS link to CFS must be clearly defined

Integration WP

Global Design Effort

Planning and Process (General)

- Critical for cost containment
- Difference from RDR phase: we have a cost base
- Must have process for maintaining / updating / reviewing VALUE estimate throughout EDR phase
 - Avoid last minute panic / shock
- Change Control will provide some of this
 - But not all. Small changes can accumulate
- Documentation is critical!!!
- Action item for PM and Technical Area Group Leaders.
 - FNAL meeting agenda

CF Comments

- Design of water cooling system specific to BDS is required
 - Current estimate is scaled from ML shaft
 - ΔT of 20deg (F) assumed (as in linac)
 - (has been clearly identified by groups in this meeting)
- Tunnel air temperature stability

ilr

İİL

- Understand accelerator driven requirements
- (some simply models/estimates are possible)
- At what point / levels does there requirement become challenging?
 - Cost begins to escalate
 - Might be regions of tight tolerance (as in light sources)
- Vibration criteria for magnets (critical for BDS)
 - Review / define / iterate

Magnets

- Part of the "critical path" for engineering design:
 - Lattice design
 - Magnet specifications
 - Power supply and cable definitions
 - Water/Air cooling requirements
 - Underground Volume
- Level of engineering effort must be balanced against cost leverage:
 - ~64MILCU for Magnet systems
 - ~11% of BDS cost
 - <1% TPC
 - knock-on effects may be more critical (CFS again)
- Consolidation of magnet families a clearly desirable (action item)
 - Lattice design.
- Note all magnets born equal
 - Critical magnets requiring prototyping
 - (unlikely needed in ED phase given cost leverage and BDS time-scale)
- FMEA, Radiation Hardness requirements \rightarrow availability
 - Requirements need better definition
 - Again, cost derivative / leverage must be understood

Other Systems

- Instrumentation
 - Identify critical path for EDR
 - How much of these systems must be "fully engineered" by 2010
 - We expect very few if any
 - Detail engineering can start after project approval
 - Result: mosty R&D effort, which will need to be justified to PMs during review (note large return on Eol)
- Vacuum
 - Again, identify critical EDR path (cost-drivers)
 - Full 100% engineering for BDS not required by 2010
 - Rank list of issues presented
 - Review 100um alignment issue
 - IR vacuum (very special case) should be moved to IR & IR Integration
- Collimation
 - Study concept of shorter 500 GeV CM with consumable collimator solution for TeV upgrade

IR & IR Integration

- Biggest single point cost associated with BDS
- Will require special attention during ED Phase
 - Careful planning needed
 - Interface definitions critical
 - Base design criteria for detector groups
- SC FD included in here
 - Integration aspects the main challenge
- Well defined coordination with detector groups
 - Problem of 'design maturity' of detectors noted
- Some concern that costs are already beginning to escalate in this area
- Cost control for this critical item must be high-priority during ED phase

Alternative Crossing Angle Solutions

- <u>All</u> current designs have weaknesses and performance issues
 - Baseline is most mature but there are still valid questions:
 - Crab cavity (alignment specs; interaction with tuning systems)
 - Complex IR geometry: impact on tuning / stability
 - ...
- Although less mature, it remains prudent at this time to keep alternatives as back-up
- Downstream diagnostics remain a critical 'down-select' criteria
 - But needs review also for baseline
- WP for alternatives should be raised to L4 in WBS NJW1
 - Consistent with other AS (e.g. e+ source)
 - Direct call for Eol
 - Support for these activities should be identified
- Baseline remains primary engineering focus
 - <u>Additional</u> resources for ACD WP will need to be found.

NJW1 Andrei Seryi voiced some concerns over this proposed modification. It will be discussed. Nicholas Walker, 10/15/2007

WP definitions (a recommendation for discussion)

Accelerator Physics Design

NJW2

- BDS Integration → primary WP connection to CFS
- IR & IR Integration
- Crab Cavity
- Beam Dumps
- Collimation System
- Magnets & PS
- Instrumentation
- Vacuum
- Alternative IR geometries
- Physics Options

NJW2 Andrei Seryi raised concerns over this proposed re-structuring. He noted that it did not take into account his organisation structure, which includes a support Integration Engineer.

He reiterated his concerns over the Alternative and Physics Options WP. Nicholas Walker, 10/15/2007

- Require top-down policy from PM/EC/HEP community for
 - Support of TeV upgrade
 - Options:
 - G-g, fixed target,...
 - General approach: incremental cost
- ES&H requirements policy (in progress)
- Managing ACD

BDS R&D

- Many R&D topics covered in last two days
- S4 priorities identify (mostly) critical single-point R&D items
 - Must understand time-scale for necessary R&D
 - How items impact BDS design
 - Risk analysis

- Critical R&D milestones need to be included in schedule/WBS
 - Identify their relationship to engineering design
 - Again CFS impact is critical path

Short Term Milestones

- Complete WBS matrix
 - Review/refine WBS (WP definitions)
 - templates
 - Consolidate Eol
 - Understand resource base
- Document RDR baseline in EDMS
 - All relevant documentation in EDMS structure
 - Re-establish traceability between design and cost information
 - Specifications etc.
- Begin first iteration of accelerator design
 - Lattice review
 - Aim for partial EDR freeze by Sendai
- Any one of these will keep BDS management 100% occupied

Global Design Effort

Close-Out Report

- This presentation is just the beginning
- PM will produce a draft close-out report (from template) which will contain more detail
 - Iterate with Andrei before publication
- All reports will hopefully be available by GDE meeting
 - DR excluded.

An Excellent Meeting...

- ... if not a little intense!
- Many thanks to all the presenters
 - <u>All</u> comments and suggestions have been duly noted and will receive our attention.
- Many thanks to our host (Andrei)