

Vacuum System for BDS [Completeness of RDR]

- Y. Suetsugu
- J. Noonan and P. Michelato
 - Design principle
 - Basic design
 - Cost estimation
 - Issues to be discussed
 - Summary

Design principle_1

- General remarks
 - The vacuum system of RDR = The minimum design for cost estimation
 - Cost per unit length
 - No detailed design exists, that is, the layout of pumps and the diameter of pipes, for example, were determined from a general consideration.
 - Not responding to each component
 - Use standard UHV vacuum system

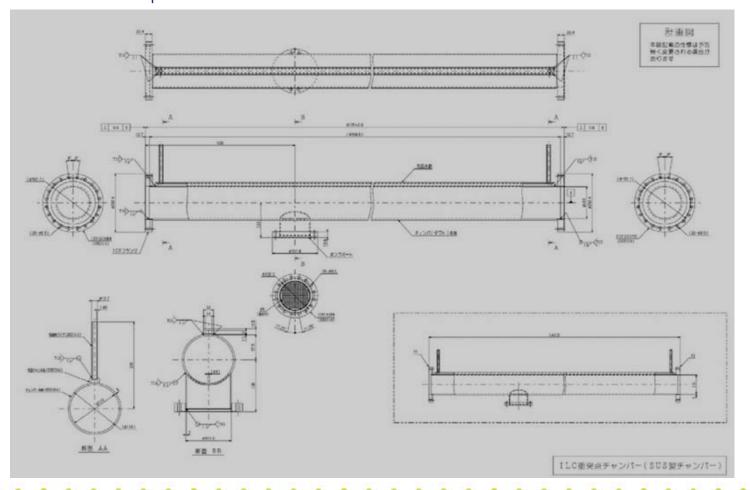
Design principle_2

- Use standard UHV vacuum system_1
 - Use standard materials:
 - SS, Cu, Al-alloy, Cu-plated SS
 - Depend on SR power, impedance requirement
 - Use standard pumps:
 - Ion pumps, Ti-sublimation pumps, NEG (coating)
 - TMP (Turbo-molecular pump), scroll pump for rough pumping
 - Lumped pump system, basically

Design principle_3

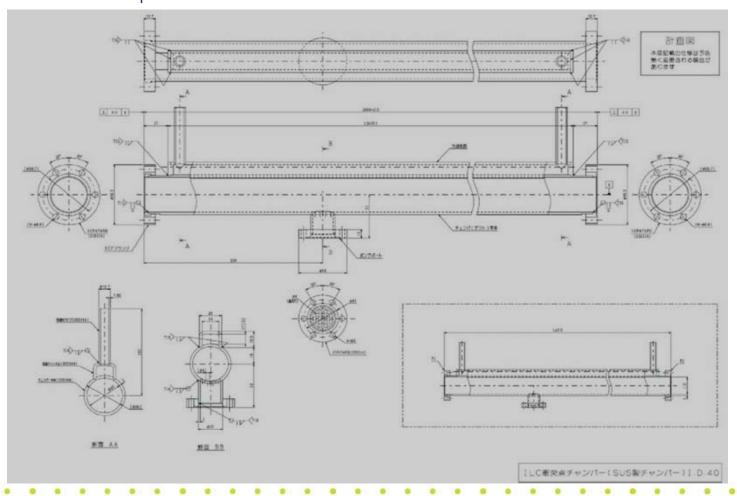
- Use standard UHV vacuum system_2
 - Use standard monitors:
 - Vacuum gauge = BA gauge (Hot cathode type)
 - Mass Analyzer = Quadrupole Mass Spectrometer
 - Use standard components:
 - Conflat UHV flange
 - Manifolds compatible to Conflat flanges
 - Bellows chamber with RF shield inside
 - Gate valves with RF shield inside
 - Fire-retardant, radiation resistant cables
 - Etc.....

- Requirement for pressure (equivalent to N₂/CO):
 - -5×10^{-6} Pa (50 nTorr), basically.
 - 1×10⁻⁷ Pa (1 nTorr) for some region at upstream side of IP


Beam duct

- Duct material: Stain-less steel, basically
 Al-alloy or copper depending on SR power, and requirement from impedance
- No in situ. baking, basically
- Each duct for an element is considered as a standalone one, that is, the flanges are at both sides of a duct.
- The maximum length of a beam duct is 10 m.
- The minimum length is 1 m.
- One magnet has one beam duct
- Circular cross section
- Cooling channel at one side, if necessary

Example_1


• Ex. SS_\phi110mm duct

Example_2

• Ex. SS_\phi40mm duct

- Aperture
 - Basically the apertures are the same to those of elements. The thickness of duct should follow the conditions as follows.

[D: Diameter, t: thickness]

D < 20 mm : t = 1 mm

20 mm $\leq D < 60$ mm : t = 2 mm

 $60 \text{ mm} \le D < 100 \text{ mm} : t = 3 \text{ mm}$

100 mm $\leq D$: t = 4 mm

- Gap between a duct and cores of a magnet should be larger than 1 mm, to avoid interference.
- Beam pipes with a different aperture should be connected through a taper (~45°).

- Connection flange
 - Connection flange is ICF conflat type.
 - The diameter of the flange, D_f [mm], are:

```
[D_f: Flange diameter, D: duct diameter]

D < 20 \text{ mm}: D_f = 34 \text{ mm (ICF 034)}

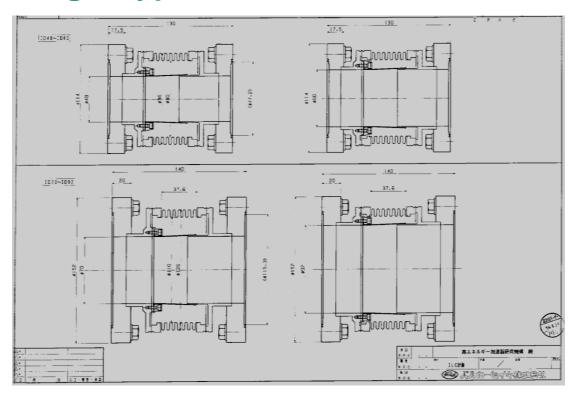
20 \le D < 40 \text{ mm}: D_f = 70 \text{ mm (ICF 070)}

40 \le D < 60 \text{ mm}: D_f = 114 \text{ mm (IFC 114)}

Etc.....
```

- Stainless-steel
- Copper gasket
- RF bridge between flange, if necessary.

- Surface treatment
 - Basically, the inner surface of the duct should be cleaned by a detergent.
 - The acid cleaning should etch the surface by about 1 micron to remove contaminated layer.
 - Following the cleaning by pure water, the duct should be dried by dry nitrogen.
 - Individual ducts will be baked, and leak checked as part of the vacuum system quality control.


- Accuracy of manufacturing
 - Total length = ± 2 mm for 10 m.
 - Tilt between the end flanges is 0.5 degree.
 - Displacement of the duct against the axis in the horizontal and vertical plane is ±2 mm.
 - Slant of the end flanges against the axis of the duct is 1 degree.
 - Displacement of the center of end flanges against the axis of the duct is less than ± 0.5 mm.
 - Width of a gap inside should be less than 0.5 mm.
 - Inside step should be less than 0.5 mm.

- Thermal gas desorption rate
 - Assumed to be 5×10^{-8} Pa m³s⁻¹m⁻² ~ 5×10^{-11} Torr I s⁻¹cm⁻²
 - Assumed thermal gas desorption rate was relatively large, because no baking in situ. was basically assumed.
- Photo-desorption Rate
 - Assumed to be 1×10⁻⁵ molecules photon⁻¹. Some extent of vacuum scrubbing is expected.
 - Photon density was assumed to be
 1×10¹⁷ photons s⁻¹m⁻¹ for the copper region, and
 1×10¹⁵ photons s⁻¹m⁻¹ for other regions.

- Bellows chamber
 - With the same radius to adjacent beam pipes
 - With finger-type RF-shield

- Pumps
 - Pumps: Sputter ion pumps
 - Lumped pump scheme.
 - Effective pumping speed, S [m³s⁻¹], are:

[D: Diameter, S: Pumping speed]

 $D < 20 \text{ mm} : S = 0.02 \text{ m}^3\text{s}^{-1}$

20 mm $\leq D < 40$ mm : S = 0.04 m³s⁻¹

 $40 \text{ mm} \le D < 60 \text{ mm} : S = 0.06 \text{ m}^3\text{s}^{-1}$

Etc.....

 Pumping speed includes the conductance of pumping slot. The actual pumping speed is the twice of the effective pumping speed.

- Rough pumping unit
 - Oil-free system
 - A rough pumping unit consists of:
 - A turbo-molecular pump (S ~ 0.3 m³s⁻¹)
 - A scroll pump ($S \sim 0.3 \text{ m}3 \text{ min}^{-1}$)
 - A manifold (cross tube, for example),
 - A Pirani-gauge, a cold cathode gauge,
 - A leak valve, an electrical valve.
 - Controllers of pumps and gauges.
 - Number of the rough pumping system is 20.
 - Removed during beam operation.

- Gate valves
 - All metal valves
 - Each region (EFF1 and so on) has at least one gate valve.
 - Valves are located every 250 m at minimum
 - Apertures of gate valves are :

[D: Diameter, A: Aperture size]

D < 60 mm : A = ICF114

 $60 \text{ mm} \le D < 100 \text{ mm} : A = ICF152$

 $100 \text{ mm} \le D < 150 \text{ mm} : A = ICF203$

Etc.....

- Gauge
 - Vacuum gauge: BA (hot cathode), QMA
 - The interval of gauge is 200 m.
- L-Angle Valve
 - All-metal L-angle valve is located every 50 m.
 - Rough pumping system is connected to the valve when the duct is evacuated from atmosphere.

Cost estimation_1

- General remarks
 - Basically, obtained from major vacuum manufactures.
 - Discussed among TS leaders to find reasonable numbers in all regions.
 - Based on TS leaders' experience so far.
 - For example, in Asia, KEK B-factory (~1996).
 - The present cost estimation, however, is not yet well optimized.
 - Diameter, lengths, etc.

Cost estimation_2

- Included terms
 - Beam ducts
 - Bellows chambers (with finger-type RF-shielding)
 - Pumps (and controllers, Rough pumping unit)
 - Vacuum gauges (and controllers)
 - Gate valves (and controllers, with RF-shielding)
 - Manifolds (6 ports for rough pumping unit and gauges)
 - Gaskets, bolts, Supports (in average number)
 - Control cables between components and controllers
 - Interlock box per one gate valve
 - Baking heaters and thermal insulators: Option
 - Preparation before installation, such as assembling, pre-baking of beam pipe, testing, etc.

Ex. of cost_1

1\$ = 120Yen 1\$ = 1.2 €

- Beam duct (Base)
 - Stain-less steel
 - Including:
 - Detergent cleaning
 - Profit of company, Risk factor
 - Flanges, pumping ports
 - No cooling channel

ϕ (Diameter)	US\$/m
20 mm	200
100 mm	300
150 mm	350
200 mm	400

Ex. of cost_2

Other Beam duct

1\$ = 120Yen 1\$ = 1.2 €

- Including:
 - Design work by company,
 - Profit of company, Risk factor
 - Flange, pumping ports

Type	Factors from "Base"
Acid cleaning	X 1.2
Aluminum alloy	X 0.6
SS+Cu coating	X 2
Cu	X 2
With Cooling pipe	X 1.5

Cost estimation_3

- Not included terms
 - All R&D
 - Spares
 - Man power for Installation, such as transportation, setting, connection, alignment, leak-checking, (baking)
 - 4 km per year by 7 persons (1 specialist)
 - Power supply for baking: Option
 - Others (facilities)
 - Electric power, Cooling water system, Storage area of vacuum components before installation, and so on

Cost estimation_4

- Ambiguity in the present cost estimation
 - Overall specifications and requirements are clear.
 But, the detailed specification are not yet given.
 - Required pressure
 - Accuracy of manufacturing
 - Surface treatment
 - Gap between magnets, etc. ...
 - Design is not yet fixed. The manufacturer counted a risk factor.
 - Beam pipe radius, lengths
 - the structure of RF shielding at pumping port, etc. ..

Issues to be discussed_1

- Required pressure should be updated, at first.
- Detailed design responding to each component and region
 - Aperture, lengths, etc. ..
- Simplification of structure
 - bellows chambers and gate valves
- R&D
 - Way to reduce gas desorption rate without baking
 - Passivation, for example
 - Quick connection flange
- Optimization

Issues to be discussed_2

- Optimization Ex. Choice of duct material
 - SS (stainless-steel), Al, or Cu.
 - In general, SS is cheaper and (may be) has higher reliability (for baking).
 - For ducts with a small radius the extrusion of Al pipe has an advantage in manufacturing.
 - SS pipe with Cu coating inside is also difficult to control the quality of the coating (and expensive).
 - Gas desorption rate of Al is comparative, if the surface is treated appropriately.

Issues to be discussed_3

- Optimization_ Ex. Baking (in situ.) or not
 - Baking in situ. can much reduce the gas desorption rate, and can reduce the number of pumps.
 - Baking (up to 200 degrees), furthermore, make it possible to consider the NEG (Non Evaporable Getter) coating, which could improve the vacuum, especially for pipes with mall radius.
 - Uniform baking along the beam pipe is difficult due to the firm fixing of the cavity BPM at present.
 The tuning of BPM will be required after baking.

Summary

- The design principle and the basic design of the vacuum system for BDS in RDR phase were summarized.
- The design is sufficient for the rough cost estimation, but primitive for the actual system.
- Detailed design and elaborative discussion should be required for ED phase.
 - Design responding each component and region
 - Simplification of structures
 - Optimization of system