

Collimation System

Nigel Watson Nikolai Mokhov Steve Molloy

Nigel Watson, 13-Oct-2007

WP7: Collimation System

- Reduce risk
- Reduce cost
- Prepare project execution plan
- WP and allocation plan
- Re-affirm identified risks
 - Mitigating fallback solutions
- Re-visit costs
- Deliverables definition per task, single institute taking responsibility on each

Nigel Watson, 13-Oct-2007

Tasks Overview

- Phys. design of collimators
 - Optics design of collimators
 - Physical design of collimators
 - Theoretical analysis of collimator wakes
 - Computing analysis of collimator wakes
 - Optimiz. background & coll. w. eng. constraints
- Eng. design of collimators
 - Eng. design of collimators
- Beam damage tests of collimators
 - Prepare KEK infrastructure for tests
 - Build prototypes & do beam test
 - Define test requirements and analyze rests

Tasks Overview – 0th guesses

- Phys. design of collimators
 - Optics design of collimators STFC
 - Physical design of collimators
 - Theoretical analysis of collimator wakes SLAC
 - Computing analysis of collimator wakes Cockroft
 - Optimiz. bkg & coll w. eng. constraints FNAL
- Eng. design of collimators
 - Eng. design of collimators STFC
 - Marble shells FNAL
- Beam damage tests of collimators
 - Prepare KEK infrastructure for tests
 - Build prototypes & do beam test
 - Define test requirements and analyze rests
 - Materials studies BNL
- Damage detection system
 - Design/prototype Birmingham

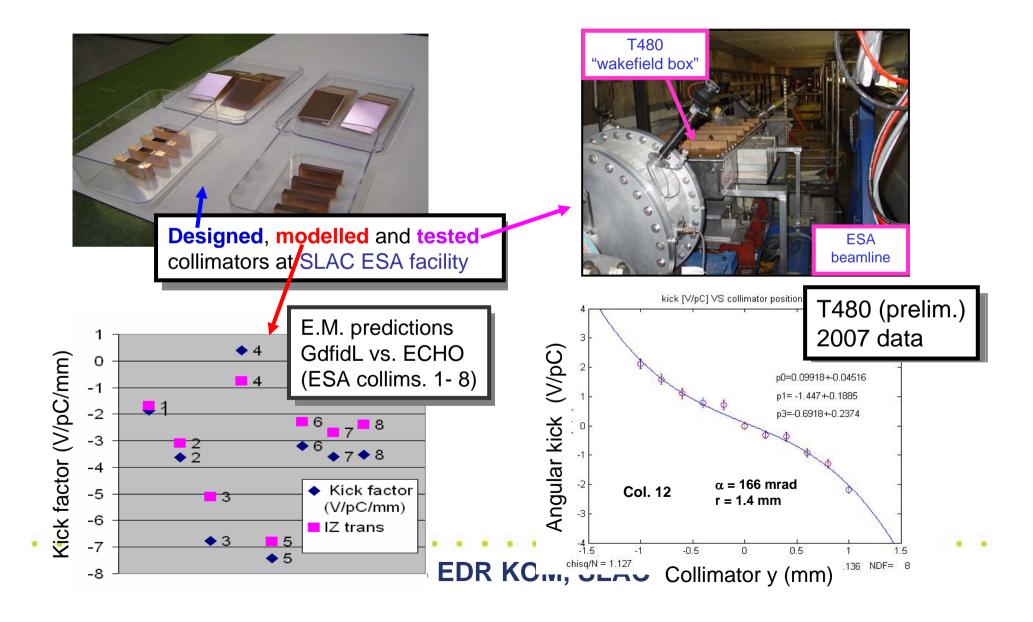
Related tasks from other WPs

- Consider movement of tasks between WPs, or similar to ensure effective co-working
 - Essential to avoid duplication (or interference)
- WP3: Collimation optimisation
 - Halo/efficiency
 - Iterate to include improvements in wakefield modelling
 - Iterate with damage simulation
- WP9
 - ESA wakefield tests
- Overlap with other groups important, e.g. RTML, positron source, use standardised designs where reasonably possible?

Process of allocation of tasks

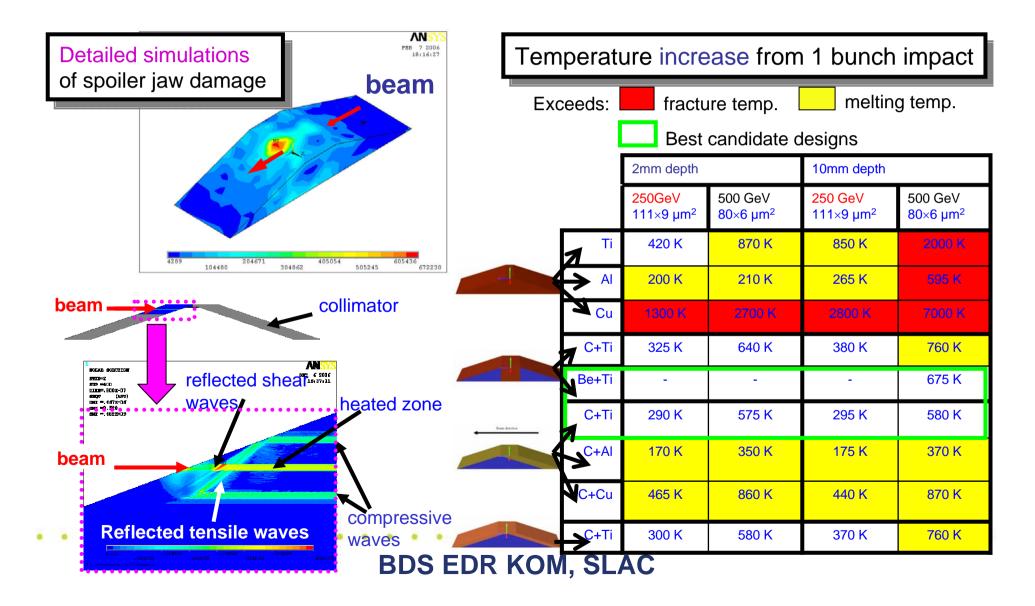
- Lols received from SLAC, FNAL, INP/MSU, UK
 - All tasks are covered
- Other institutes?
 - Will contact others who have not replied to Andrei's call
- Deliverables definition per task, single institute taking responsibility on each
- Agree on this as soon as reasonably possible
- Institutes should be prepared to adapt their contributions during EDR phase, e.g. if priorities change, or alternatives become baseline
 - Resource redirection may have implication with funders

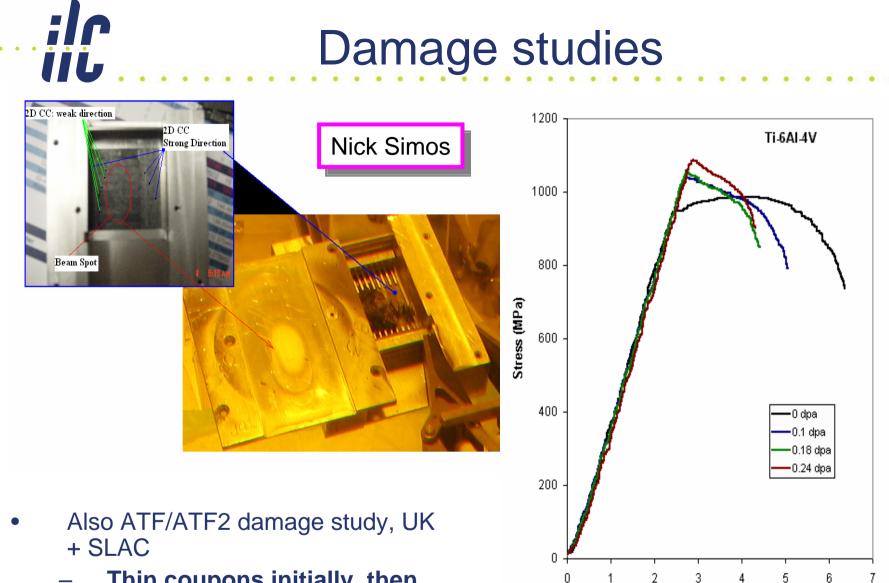
- More reliable analytic calculation of wakefields
 - Jitter amplification/emittance dilution
 - Inclusion in tracking simulations
 - Main purpose, more realistic optimisation of
- Improved accuracy
 - Benchmarking with test beam data
- 3D numerical e.m. calculations
 - Compared with test beam data
 - Full geometry of physical collimator
- Damage detection
- Alternative Configurations higher risk, potentially large benefits
 - Crystal collimators
 - Renewable spoilers value engineering


Nigel Watson, 13-Oct-2007

Examples of Deliverables

- 3D wakefield simulations for collimator prototypes
- 3D wakefield theoretical calculation (package?)
- Wakefield test beam results for collimator jaws
- Data-validated material response simulations for BDS components
- Prototype damage detection system for collimators
 - Quantify damage after beam loss, decide whether acceptable to continue or intervention required (cf. renewable spoiler scheme)
- Full engineering details of absorbers, protection collimators and masks in the BDS
- Prototypes of critical subsystems of adjustable jaw collimators
- + ...


Examples, wakefield measurements


Wakefields, survivability. Strong collaboration between SLAC and EUROTeV groups.

Examples, damage studies

Wakefields, survivability. Strong collaboration between SLAC and EUROTeV groups.

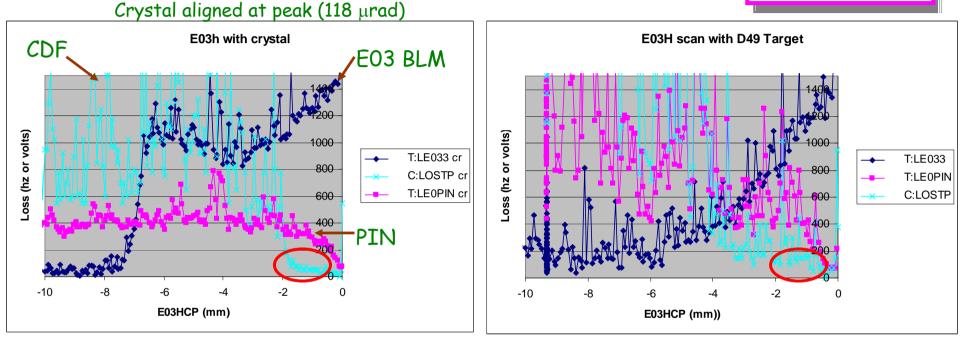
 Thin coupons initially, then shockwave measurements by VISAR

Nigel Watson, 13-Oct-2007

BDS EDR KOM, SLAC

Engineering Strain (%)

Examples



Nigel Watson, 13-Oct-2007

- GOMPARING EFFECTS OF PROTON HALO LOSSES FOR BENT CRYSTAL AND TUNGSTEN

TARGET

Nikolai Mokhov

Using the crystal:

- The secondary collimator can remain further (1 mm or so) from the beam thus reducing impedance.
- Almost a factor of 2 better reduction of CDF losses achieved a half a ring (2 miles) downstream (in agreement
- With modeling) !!! Nigel Watson, 13-Oct-2007 BDS EDR KOM, SLAC