

Global Control System

J. Carwardine (ANL) 6 November, 2007

1

- Control system scope
- Requirements, challenges
- Costing assumptions
- Damping Ring device counts
- Timing & synchronization
- Availability

ilr

İİL

- Front-end electronics
- Controls EDR topics

Scope of Controls

Computing Infrastructure

Computer Center

ilr

İİL

- Business Computing
- Computing Networks
- Desktop Support
- Engineering Support
- Computer Security
- Management

Controls System

- Central Computers
- On Site Control Room
- Controls Services
 - Operator Interface
 - Automation
 - Logging
 - databases
 - Data Archival
 - Alarms
 - Diagnostics

Interfaces to Technical Systems

- Front Ends
 - Hardware
 - software
- Cabling

Protection Systems

- Machine Protection
- Personnel Protection
- Beam Containment
- Network Infrastructure
- Assembly and Testing of Controls Racks

Controls requirements

- All the usual requirements of an integrated control system...
 - Control & monitoring, GUI, archiver, save/restore, alarm handler,...
- Technical challenges driven by ILC scale & complexity
 - 100,000 devices, several million control points
 - Main linacs: 640 RF klystrons, 2000 cryomodules, 16,000 cavities
 - Control system: 1000+ front-end crates
- System integration, standardization of interfaces.
- Accelerator operations: reliance on automation & feedback
- Accelerator availability goal of 85% (control system: 99%)
- Precision timing & synchronization over 10's km.
- ILC funding model: multi-national in-kind contributions.

And then...

Controls has to be ready before anything else...

- Support technical system test & commissioning
- Support staged (parallel) accelerator commissioning.

Addressing the challenges

Large scale deployment

- Strong emphasis on diagnostics, quality assurance.
- Evaluate High Availability techniques
- Resource management
- Emphasize standards-based solutions.

Extensive reliance on automation and 5Hz feedback

- Automation and feedback engines implemented in Services.
- Make all control & monitor points available to feedback engine, synchronize control and monitor actions to 5Hz beam pulses.

Controls integration of in-kind contributed equipment

- Scope, span of control, treaty points...
- Rely on experience from XFEL, ITER

Control System functional model

Damping Ring KOM 11/6/07

Examples of Services

- Script execution service
- Archiving service
- Logging service
- Data processing & visualization
- Save, Compare, Restore
- Alarm Management
- RDB calls
- Locking (channel, instance,...)
- Math & logic functions
- Event sequencer / synchronizer

- Device server
- Data concentrator
- Feedback / dynamical control
- Video processing, compression
- Out of Band monitoring
- Exception handling
- Resource management
- Authentication / access control
- Notification (email, phone, sms,...)

Physical model: front-end

Damping Ring KOM 11/6/07

- Physical model assumes that all control and monitoring points are available for use in a 5Hz synchronous feedback loop
 - Allows ad-hoc feedback loops to be create using high level applications without prior assignment of sensors or actuators.
- **Feedback algorithms are implemented in Controls Services Tier.**

Requires synchronous operation of technical systems and of the controls network.

- A high degree of standardization is assumed for the interfaces from technical systems to the control system
 - Not simply defining the interface as "Ethernet", but also specifying protocols, equipment behavior, functionality, etc

Standardization is necessary to...

- Reduce controls manpower.
- Provide consistent look/feel for similar equipment.
- Ensure that equipment coming from many sources can be fully integrated into the control system.

Front-end equipment costing model

Common model for front end equipment based on ATCA with redundant processors

- ATCA is targeted at the Telco industry, but has HA features of interest to other "up time" critical systems.
- High-level (Ethernet) interfaces assumed in most cases, with discrete I/O largely eliminated from costing model
 - Reflects trend to embed processors in technical equipment
 - Pushes some front-end 'Controls' costs into the technical equipment.
- In some cases, TS interface electronics are installed in Controls crates (eg bpm instrumentation).
- Bottom-up estimates of front-end equipment using device counts from each AS group (still in flux).

Front End Equipment and Device Counts

Controls equipment required...

e- source	e+ source	DR	RTML	Linac	BDS
150	248	546	430	650	366
445	892	1,962	1,546	1,461	1,317
67	831	1,346	708	4,453	951
4	18	29	15	93	20
3	4	8	3	36	17
75	124	273	215	325	183
39	64	141	109	181	100
400	4,982	8,072	4,244	26,713	5702
240	911	3,037	1,600	1,940	1332
268	3,324	5,384	2,832	17,812	3804
	e- source 150 445 67 4 3 3 75 39 400 240 268	e- source e+ source 150 248 445 892 67 831 4 18 3 4 75 124 39 64 400 4,982 240 911 268 3,324	e- source e+ source DR 150 248 546 445 892 1,962 67 831 1,346 4 18 29 3 4 8 75 124 273 39 64 141 400 4,982 8,072 240 911 3,037 268 3,324 5,384	e- source e+ source DR RTML 150 248 546 430 445 892 1,962 1,546 67 831 1,346 708 4 18 29 15 3 4 8 3 75 124 273 215 39 64 141 109 400 4,982 8,072 4,244 240 911 3,037 1,600 268 3,324 5,384 2,832	e- source e+ source DR RTML Linac 150 248 546 430 650 445 892 1,962 1,546 1,461 67 831 1,346 708 4,453 4 18 29 15 93 3 4 8 3 36 75 124 273 215 325 39 64 141 109 181 400 4,982 8,072 4,244 26,713 240 911 3,037 1,600 1,940 268 3,324 5,384 2,832 17,812

for control of ...

ILC Technical Equipment Totals by Category and Area System							
	Area System						
TECS Category	BDS	DR	e-	Linac	e+	RTML	
							Total By Category
Power Supply	654	3866	171	3722	2267	1442	12122
Instrumentation	744	1580	165	2024	749	1418	6680
Vacuum	1787	464	20	6733	219	632	9855
Motor System	234	0	0	0	0	0	234
Feedback system	14	4	5	20	10	4	57
							C
Other	176	0	4	1215	4	48	1447
Total By Area	3609	5914	365	13714	3249	3544	
Total	30395						

these Area System devices (note: LLRF motor-controllers and cryo not listed here)

Damping Ring KOM 11/6/07

Damping Ring device counts

Component Type		Total	
B Magnet (chained)	Main PS	32	
B Magnet (individual)	PS	0	
Q Magnet	Main PS	2	
	Shunt PS	1646	
Q Magnet	PS	0	
Skew Q Magnet	PS	0	
S Magnet	PS	1008	
O Magnet	PS	0	
Corrector magnet	PS	900	
Septum	PS	8	
Stripline Kicker	PS	120	
Wiggler	PS	160	
	Cryo	160	
Magnet mover		0	
		0	
Cavity BPM (warm)		0	
Cavity BPM (cold)		0	
Button BPM		1494	
LOLA monitor		0	
Laserwire		2	
BLM		80	
Wirescanner		0	
Beam current monitor		2	
Optical monitor		2	
Spectrometer		0	
Polarimeter		0	
Feedback - special		4	
		0	
		0	
		0	
Ion Pump	a barri breti r	464	1 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Device counts and equipment types need validation in ED phase

Timing System Overview

Damping Ring KOM 11/6/07

Phase & timing distribution

Availability

ILC control system availability goal: 99% by design

- 1000+ front-end crates \Rightarrow 99.999% per crate.
- Cannot afford a long period of identifying & fixing problems once machine operations begin.

'Best effort' approach may not be sufficient \bigcup

Investigate High Availability techniques.

ic

Accelerator Availability **Availability Downtime event Restart time after Recovery time** rate (Reliability) shutdown or studies Intrinsic Fault Fault Fault **Automation** diagnosis mitigation reliability Tolerance Remote Remote restart Hot-swap failed Remote Fault sequence Event reconfiguration (power cycle, components diagnostics detector recognition (online spares) reset) Accelerator availability goal: 85% Control system availability goal: 99% Component System level

Requires intrinsic reliability + rapid recovery

Damping Ring KOM 11/6/07

Control System - Carwardine

Level

HA requires different considerations

Apply techniques not typically used on an accelerator

- Development culture must be different.
- Cannot build ad-hoc with in-situ testing.
- Build modeling, simulation, testing, and monitoring into hardware and software methodology up front.

Hardware availability

- Instrumentation electronics to servers and disks.
- Redundancy where feasible, otherwise adapt in software.
- Modeling and simulation

Software availability

- Equally important.
- Software has many more internal states difficult to predict.
- Modeling and simulation needed here for networking and software.
- Robustness, exception handling.

Damping Ring KOM 11/6/07

Not just redundancy...

ilc

...but also sound design principles, methodology, QA

- Online database containing information about every component in the system
 - Cable plant, physical locations, electrical power, etc
 - Hardware, software, firmware, revisions, "DIP switch" settings,...
 - Physics model, engineering model.

Validate equipment installation

Extensive monitoring and diagnostics to detect and recover from failures.

Resource management Example: replacing circuit board

Damping Ring KOM 11/6/07

ic

Front-end electronics requirements

HA-specific requirements

- Intelligent Platform Management
- Remote power on/off and reset/initialize for individual boards.
- Highly improved diagnostics capabilities in all electronics subsystems.
- Support redundancy: processors, comms links, power supplies,...
- Hot-swappable components: circuit boards, fans, power supplies, ...

Platform basic requirements

- Standard modular architecture
- Broad industry support of core components
- Wide range of COTS modules + support custom instrumentation.
- 'High performance' + cost-effective.

If not VME or VXI, then what...?

- Candidate standards include ATCA, uTCA, VME64x, VXS, VPX, other VITA standards...
- Of systems available today, ATCA offers the best representative feature set
 - Represents best practices of decades of telecom platform development.
 - Increasing evidence of commercial products for controls applications.
 - Growing interest in the Controls and DAQ community.
 - Being evaluated by several labs. Strong candidate for XFEL.

Two flavors

- ATCA: Full-featured, large form-factor
- uTCA: Reduced feature-set, smaller form-factor, lower cost.

For ILC Controls, allows R&D on high availability techniques.

Engineering Design R&D Phase

Main focus of R&D efforts are on high availability

 Gain experience with high availability tools & techniques to be able to make value-based judgments of cost versus benefit.

Four broad categories

- Control system failure mode analysis
- High-availability electronics platforms (ATCA)
- High-availability integrated control systems
 - Conflict avoidance & failover, model-based resource monitoring.
- Controls as a tool for implementing system-level HA
 - Fault detection methods, failure modes & effects

RDR model to EDR design

- Technical equipment / Area System specific...
 - Better information on device counts, types, locations
 - Data rates, etc
 - Tunnel/alcove space utilization
 - Cable and relay rack layout cost optimization.
- Refine model for standardization of front-end equipment requirements and interfaces.
- Explore impact of different vendor models
- Bottom up assessment of overall level of effort.
- High Availability feature set and cost optimization.
- High level control system functionality.

Controls Work Packages

- Electronics Platform (ATCA is in here)
- High availability
- Controls system architecture
- Engineering
- Software Development
- Configuration
- Integration (includes interfaces with each accelerator area)
- Timing and Synchronization
- Project Management
- Safety System
- Automation
- Operator Console Application

Control System - Carwardine

31

Control System - Carwardine

F. Lenkszus

ATCA crates

Damping Ring KOM 11/6/07

Some activities are not well suited to channel-oriented interfaces

– Complex

ic

- May require lots of parameters and a sequence of interactions
- Dynamic
 - May be added and removed frequently during operations
 - May require dynamic allocation (network latency and/or cpu loading)

Services allow rapid prototyping of high level apps through composition, while maintaining an impedance to changing the core functions.

Services

Example: Knob Service Sequence

C. Saunders

Damping Ring KOM 11/6/07

ATCA Shelf w/ Dedicated Shelf Management Controllers

