Compact GLD

A possible modification of GLD

Aug 6, 2007 Y. Sugimoto KEK

1

Motivation

- GLD and LDC will write a common Lol
- The detector design should have common parameters
- Modified design of GLD with the central values for B and R_{CAL} between original GLD and LDC is made as a "gedanken experiment" (Common parameters should be determined based on detailed simulation study)
- B=(3+4)/2=3.5 T
- R_{CAL}=(2.1+1.6)/2=1.85 m

Compact GLD - GLDc

Parameters (1)

			GLD	GLDc
Iron Yoke	Barrel	Rout	7.2 m	6.9 m
		Rin	4.5 m	4.1 m
		Weight	6090 t	5080 t
	E.C.	Zin	4.2/4.5 m	3.7/3.95 m
		Zout	7.5 m	6.9 m
		Weight	3260 t / side	3050 t / side
Solenoid	В		3 T	3.5 T
	R		4 m	3.6 m
	Z		4 m	3.6 m
	E		1.6 GJ	1.7 GJ
Stray field @Z=10m			70 G	120 G

Parameters (2)

			GLD	GLDc
TPC	Rin		0.45 m	0.45 m
	Rout		2.0 m	1.75 m
	Zmax		2.3 m	2.0 m
Barrel CAL	ECAL	Rin	2.1 m	1.85 m
		Rout	2.3 m	2.05 m
		BRin ²	13.2 Tm ²	12.0 Tm ²
	HCAL	Rout	3.5 m	3.15 m
		Thickness	1.2 m	1.1 m
EC CAL	ECAL	Zmin	2.8 m	2.4 m
		Zmax	3.0 m	2.6 m
	HCAL	Zmax	4.2 m	3.7 m
		Thickness	1.2 m	1.1 m

FD Support / Shield block

• Endcap opening

- Remove A horizontally by air pad
- Open the endcap
- Push-pull
 - Disconnect beam pipe at Z~10.5m
 - Slide C horizontally
 - Slide the platform

Endcap Open

B-field

Impact on MDI

- Surface assembly
 - Barrel part (Fe return yoke + Solenoid) is lighter than 6000 ton → Separation into 3 is possible for CMS style assembly
 - Heaviest component to be lifted:
 - Segments of upper parts of Fe+concrete shield ~140/N ton, or
 - FD support tube ~30 ton
 - → Crane capacity: 400 ton → 50~80 ton
- Push-pull scheme
 - |Z| of the detector is reduced to 6.9 m and only ΔZ =1.6m is necessary to open the endcap on the beam line
 - Supporting FD from the floor (platform) and BDS cut at |Z|~10.5 m (i.e. after QF1) make endcap-opening and push-pull operation much easier and quicker
 - 22x21 m² platform
- Stray B-field
 - Stray field at Z=10 m increases from 70G to 120G, but still can be reduced below 50 Gauss by inexpensive compensation coil and iron shield around beam line
- L*
 - L^* of ~4.2 m would be adequate

Endcap Deformation

- FEA model
 - 2D axial symmetry
 - 3D for simple structure
 - Constraint in z direction at R=4.1m and 6.9m for GLDc (Rin and Rout of barrel yoke)
 - Uniform force of 1 MN/m³ is assumed

Endcap Deformation

• Results

		Angle	Support ring	∆Zmax	
GLD	3D	90	No	51 mm	57 mm by Yamaoka-san
GLDc	3D	90	No	27 mm	
GLDc	3D	180	No	16 mm	
GLDc	3D	360	No	11 mm	
GLDc	2D	360	No	12 mm	
GLDc	2D	360	1 (r=4.1m)	3.7 mm	
GLDc	3D	360	1	3.2 mm	
GLDc	3D	180	1	4.1 mm	
GLDc	2D	360	2 (r=2.3, 4.1m)	1.7 mm	
GLDc	2D	360	3 (r=2.3, 3.2, 4.1m)	1.1 mm	
GLDc-SiD like	2D	360	No	90 mm	23x(10cm Fe+5cm gap)

 Δ Zmax is expected < 2 mm for

180 degree 3 ring case

Endcap Deformation

- Summary
 - Difference of deformation between splitting and nonsplitting is not so large
 - In splitting design, installation and maintenance of muon detectors can be done from the splitting plane
 - As a consequence, support rings can be put between iron slabs without disturbing the installation and maintenance of muon detectors
 - Splitting design with support rings gives much smaller deformation than non-splitting design without support ring

Summary

- A possible scenario with compact GLD is
 - Pure CMS style assembly
 - Endcap is split into two
 - Final doublet is contained in a common cryostat, and supported from the floor of a platform through a tungsten support tube
 - In push-pull operation, BDS is cut after QF1 (~10.5m)
 - The platform has the size of 21mx22m